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PREFACE

This report is a sequel to an earlier report titled "Aeroelastic

Effects in Multirotor Vehicles with Application to a Hybrid Heavy

Lift System, Part I: Formulation of Equations of Motion", (NASA

CR-3822, August 1984).

The research effort reported herein was carried out in the Mechanical,

Aerospace and Nuclear Engineering Department at UCLA by Dr. C. Venkatesan

and Professor P. Friedmann who served as the principal investigator.

The authors want to take this opportunity to express their gratitude

to the grant monitor Dr. H. Miura for his numerous constructive comments

and suggestions, as well as for much of the numerical data used in Section

4.2.1.
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SUMMARY

This report is a sequel to the earlier report titled "Aeroelastic Effects

in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part I:

Formulation of Equations of Motion". The trim and stability equations are

presented for a twin rotor system with a buoyant envelope and an underslung load

attached to a flexible supporting structure. These equations are specialized

for the case of hovering flight. The stability equations are written in multi-

blade coordinates. The total number of degrees of freedom for hybrid heavy

lift vehicle consisting of two four bladed rotors is 31. Hence the stability

analysis yields a total of 62 eigenvalues corresponding to these 31 degrees of

freedom. A careful parametric study is performed, and used subsequently to

identify the various blade and vehicle modes. The eigenvalues are identified

by relating them to the physical degrees of freedom present in the system.

This identification is based on a parametric study in which the fundamental

parameters governing the system are varied. The coupling between various

blade modes and vehicle modes is identified. Finally, it is shown that the

coupled rotor/vehicle stability analysis provides information on both the

aeroelastic stability as well as complete vehicle dynamic stability in the

longitudinal and lateral planes. Also presented, in this report, are the

results of an analytical study aimed at predicting the aeromechanical stability

of a single rotor helicopter in ground resonance. The theoretical results are

found to be in good agreement with the experimental results available in the

literature, thereby validating the analytical model for the dynamics of the

coupled rotor/support system.
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i. INTRODUCTION

This report is a sequel to the previous report entitled "Aeroelastic Effects

in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part I:

Formulation of Equations of Motion" [Ref. I], in which the equations of motion

governing the aeroelastic behavior of an approximate model representing an Hybrid

Heavy Lift Airship (HHLA) (Fig. I) were derived. The equations derived in Ref. i

were representative of a somewhat simplified model shown in Fig. 2. The model

consists of two rotors, a buoyant envelope and an underslung load, attached to a

flexible supporting structure. The various degrees of freedom, considered in

deriving the equations of motion, are flap, lag, torsion for each blade, rigid

body translation and rotation of the complete vehicle and the degrees of freedom

representing the normal modes of vibration of the flexible supporting structure.

It is useful to review some of the more important assumptions used in deriving

the equations of motion, namely:

i) The rotor consists of three or more blades.

2) The rotors are lightly loaded.

3) The rotors are in uniform inflow.

4) There is no aerodynamic interference between the rotor and the buoyant

envelope. The aerodynamic model used for the rotor blade is the quasi-

steady aerodynamic model with apparent mass terms.

5) The rotor blade is modeled as a rigid blade with orthogonal springs

located at the root of the blade (Fig. 3). This model enables one to

represent simultaneously configurations employing either hingeless

or articulated rotor system. The hinge sequence is given in Ref. i.

6) Since the geometrical nonlinearities due to moderate deflections of the

blade are known to have significant role in rotary wing aeroelasticity

The flexible portion consists of the elements having a length iF1 and ZF2 shown

in Fig. 2 .
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[Ref. 2], these nonlinearities are included in the analysis. Retention

of the nonlinear terms is based upon an ordering scheme [Refs. I and 2].

The blade degrees of freedom, representing the blade slopes, are assigned

an order 0(E), where 0.I < g < 0.15. The rigid body degrees of freedom

of the vehicle are assumed to be of a slightly smaller magnitude 0(_ 3/2)

and the elastic deformations of the supporting structure are of the order

magnitude 0(_ 2) . This assumption is quite important for obtaining

equations which are manageable from an algebraic point of view. The order-

ing scheme consists of neglecting terms of the order 0(g 2) when compared to

unity, thus i + 0(E 2) __ I.

The equations of motion for the model vehicle (Fig. 2) are nonlinear coupled

differential equations and they represent the coupled rotors/vehicle dynamics

in forward flight. These coupled equations are classified in three groups, each

group representing an appropriate sub-system equations. They are:

i) rotor blade equations of motion in flap, lead-lag and torsion,

2) rigid body equations of motion of the complete vehicle,

3) equations of motion of the flexible supporting structure.

The main advantage, due to separating the equations into various groups,

rotor aeroelastic stability or coupled single rotor/fuselage stability, etc.,

in a convenient manner. The coupled equations have considerable versatility and

they can be used to study a number of diverse problems which are listed

below:

I.

2.

3.

4.

Isolat_ rotor aeroelastic stability.

Coupled single rotor/fuselage dynamics.

Response to cyclic and collective pitch inputs.

Response to higher harmonic control inputs.

3



5. Stability analysis of twin rotor system connected by a flexible

structure.

6. Dynamics of a Hybrid Heavy Lift Airship.

Depending on the type of analysis desired, the equations are simplified and

modified to obtain an appropriate solution.

Because of the unique nature of the multirotor model (Fig. 2), the results

of the stability analysis could not be compared with any other results available

in the literature. But on the other hand, experimental results are available,

in the literature, for the aeromechanical stability of a single rotor helicopter

in ground resonance. Hencc, solving this problem analytically will provide an

opportunity to validate both the equations of motion for the coupled rotor/vehicle

system and also the method of solution. Therefore, two different types of pro-

blems are solved using the analytical model, for the coupled rotor/vehicle dyn-

amics, presented in Ref. I. In the first case, the equations of motion are used

to predict the aeromechanical stability of a single rotor helicopter in ground

resonan,_e. It was found that the analytical results are in good agreement with

the experimental results indicating that both the equations of motion for coupled

rotor/vehicle system and the method of solution are valid.

In the second case, the stability of a model vehicle (Fig. 2) representing

an HHLA in hover is analyzed. The total number of degrees of freedom for the

model HHLA consisting of two four bladed rotors is 31 • Hence, the stability

analysis yields a total of 62 eigenvalues corresponding to these 31 degrees of

freedom. Based on a careful parametric study, various blade and vehicle modes

have been identified. A physical interpretation of the eigenvalues is obtained

from a systematic study of the eigenvalue variations as a consequence of the

variations of the vehicle system parameters. Finally the coupling between various



blade modesand vehicle modes is identified.

In this report, the method of solution, the relevant trim (equilibrium)

and linearized stability equations for the two applications mentioned above

are considered and explored in detail.



2. METHOD OF SOLUTION

The equations of motion representing the dynamics of the coupled rotor/

vehicle system, presented in Ref. i, can be used to obtain either the response

or the stability of the vehicle. The method of solution depends on the

type of problem being considered, i.e. whether a response or stability analysis

is required. For a stability analysis, one must distinguish between the case of

hover which is relatively simple and the case of forward flight which is much

more complicated. In this section, the method of solution used for the aero-

elastic stability of a multirotor vehicle in hover is presented.

The equations of motion, for coupled rotor/vehicle problem, are usually

nonlinear coupled differential equations with periodic coefficients. These

differential equations can be either ordinary or partial depending on the type of

model used for the representation of the blade. If the blade is modelled as a

rigid blade with root springs, the resulting equations will be nonlinear ordinary

differential equations. On the other hand, if the blade is modelled as a flexible

beam, the final equations will be nonlinear partial differential equations. In

this case, the partial differential equations are first transformed into ordinary

differential equations using Galerkin's method. Thereafter, the method of solu-

tion is the same, irrespective of the modelling of the blade. In the present case,

because the blade is modelled as a rigid blade with root springs (Fig. 3), the

equations of motion are nonlinear coupled ordinary differential equations with

periodic coefficients. To obtain the stability of the vehicle the following

procedure is used:

1. Evaluation of the trim or equilibrium state.

2. Linearization of the nonlinear ordinary differential equations about the

equilibrium position (linearized equations will have periodic coefficients).



3. Transformation of the linearized equations with periodic coefficients

to linearized equations with constant coefficients, by applying multi-

blade coordinate transformation.

4. Evaluation of the eigenvalues of the linearized equations with constant

coefficients to obtain the information on the stability of the system.

These four steps can be separated into two stages of analysis, namely, (i) a

trim analysis intended to establish the nonlinear equilibrium position of the

blade, and (ii) a stability analysis of the linearized perturbation equations

about the equilbrium state. A description of these two analyses are pro-

vided in the following sections.

2.1 Trim or Equilibrium State Solution

In the trim analysis, the force and moment equilibrium of the complete ve-

hicle together with the moment equilibrium of the individual blade about its root

in flap, lead-lag and torsion are satisfied respectively. It is important to re-

cognize that only the generalized coordinates representing the blade degrees of

freedom will have a steady state value representing the equilibrium position. The

generalized coordinates associated with the rigid body motions of the vehicle are

essentially perturbational quantities and hence their equilibrium, or trim, values

are identically zero. In deriving the equations of motion for the flexible sup-

porting structure, it was assumed that the vibrations of the structure occur about

a deflected equilibrium position. The determination of the equilibrium position

of the supporting structure is unimportant in the case considered here, for the

following reasons: (a) this equilibrium position is not going to affect the

equilibrium values of the blade degrees of freedom, since the blade equations

contain only the time derivatives of the degrees of freedom representing the

elastic modes of the supporting structure. The physical reason for this



mathematical dependence is due to the fact that blade inertia and aerodynamic

loads depend on the hub motion and not on the hub equilibrium position. The

hub motion is related to the fuselage motion and the vibration of the supporting

structure, and (b) the final linearized differential equations used for the

stability analysis do not contain any term dependent on the static equilibrium

of the supporting structure because only the perturbational blade inertia and

aerodynamic loads excite the vehicle rigid body motion and the vibration of the

supporting structure. Hence, the generalized coordinates for the vibration modes

of the supporting structure are again perturbational quantities.

The k th blade degrees of freedom can be written as

Bk = Bk0 + AB k (_) Flap

_k = _k0 + A_k (_) Lead Lag (2.1)

_k = _k0 + A_k (_) Torsion

where Bk0 , _k0' CkO are the steady state values and ABk, A_k , A_k are the per-

turbational quantities.

Linearization of the equations is accomplished by substituting these expres-

sions into the nonlinear coupled differential equations and neglecting terms con-

taining the products or squares of the perturbational quantities. The remaining

terms will have either the steady state quantities as coefficients or the time

dependent perturbational quantities, multiplied by the steady state values

or some appropriate constants. Separation of these terms yields two

groups: one group of terms contains only the steady state quantities and con-

stants (i.e., time independent quantities). These represent the trim or equilibrium

equations. These are nonlinear algebraic equations which represent force and

moment equilibrium equations determining the steady state. The second group con-

tains the time dependent perturbational quantities and represents the linearized

8



equations of motion about the equilibrium position. These linearized dynamic

equations of equilibrium are used for the stability analysis. The steady state

equilibrium equations can be written symbolically as

for the complete vehicle

F =F =F = 0 (2.2)
X V g

= 0 (2.3)M =M =M
x y z

and for the individual blade

M_=M =M = 0 (2.4)

where Fx, Fy and Fz represent the forces of the vehicle in X,Y,Z directions,

respectively; Mx,My,M z represent the moments on the vehicle about X,Y,Z axes res-

pectively; and MB,M_,M _ represent the moments of the blade forces about the root;

respectively.

In these equations, Fx, F and M are identically zero. The remainingy x

equations for the vehicle can be written as

F = TI + T2 + pS _ W = 0 (2.5)
Z

M = 0 (2.6)
Y

M = 0 (2.7)
Z

where T 1 and T2 are the magnitude of the thrust developed by the two rotor systems

R I and R2, PZ is the static buoyancy on the envelope, and W is the weight of

the _I _+_.....w.... vehicle.

The quantities T 1 and T2 are functions of the steady state flap, lag and torsion

angles, collective pitch angles and the operating conditions of the rotors.

Equation (2.7) for M z represents the torques developed by the two rotor systems.

These torques can be either balanced by having a tail rotor for each main rotor

or by having two counter-rotating main rotors. For the case where the rotors

are assumed to be counter-rotating, the blade loads are to be evaluated for

A

the two rotor system with angular velocities + _e z and - _ez respectively.



In Ref. i, the rotor loads are derived for a typical rotor with angular velocity

A

+ _e and the same expressions for loads are used both rotors. Thus we assume
z

that the torque developed by each main rotor is compensated by a tail rotor.

Equation (2.6) for M consists of the pitching moments developed by the
Y

thrust of the rotors and gravity loads on the various components.

The steady state moment equilibrium equations for the individual blade

will have the following symbolic form

i i i i 0 O) = 0MB = £i (Sk0' _k0' _k0' (2.8)

i i _i i 0M_ = f2 (Bk0' k0' _k0' @ ) = 0 (2.9)

i (_k0' i _i @0 ) = 0 (2 i0)M_ = f3 _k0' k0'

where i = 1,2 refers to the two rotor systems R I and R 2 respectively

and k refers to the k th blade in the i th system. For the case of steady

state, all the blades in each rotor System will have the same steady state

values (or equilibrium quantities) an_ thus the su_scrlp_ 'k' can be deleted.

Equations (2.5), (2.6), (2.8) - (2.10) are nonlinear algebraic equations.

oThere is a total of 8 equations and 8 variables (_ , _0' *0' 80 ; i = 1,2).

These eight equations can be solved iteratively by the Newton-Raphson method,

to obtain the steady state values. Failure to converge during iteration can be

attributed to the divergence or static instability of the blade. (These equili-

brium equations are given in the next chapter.)

In deriving the equations of motion, the inflow ratio _ is assumed to be

constant over the disc. The typical value chosen for the inflow ratio is its

value at 75% of the blade span. It is given as [Ref. 3]

24 80_ Oa
16 ( - 1 + 1 + oa )

where 80 is the collective pitch of the blade.

(2.11)

i0



2.2 Iterative Procedure for the Trim Solution

The equilibrium equations of the blade (Eq. 2.8 - 2.10) and the equations

of the complete vehicle (Eq. 2.5 and 2.6) have to be solved numerically to obtain

the steady state values of the blade deflections in flap, lag and torsion

(BO, i i . i_0' _0 ' i = 1,2) and the collective pitch angles ( @0' i = 1,2) of the

rotor systems R 1 and R 2. Blade equilibrium is obtained by an iterative procedure.

It can be seen from the equilibrium equations of the blade (Eq. 2.8--2.10) that the

th
equations for the blade in i rotor system consists only the variables corres-

ponding to that rotor system. Hence these equations can be solved separately for

i
each rotor. By assuming a collective pitch angle of @0' the equations

(2.8) - (2.10) are solved to obtain the equilibrium angles (BI0, _I0, _I0) of the

2
blade in rotor system R I. Then by assuming a collective pitch angle @0' the

equilibrium equations are solved again for the equilibrium angles (BO, _0' _0 )

of the blade in rotor system R 2. It is important to recognize that these equili-

brium angles of the blades can be different for the two rotor systems R 1 and R2,

because these angles depend upon the operating conditions and the blade parameters

which can be different for the two rotor systems. However all the blades in each

I 1 i
rotor system will have the same equilibrium angles. After obtaining BO, _0' _0

A2 2 2

and 50, _0' g0' these quantities are substituted ........ u_.^1...... i.-_.._J-.LL LL,I.I_.... Vt:_LI./L.L_;:: q_.U_.LJI-_LU_- J-_._UL

equations (Eq. 2.5 and 2.6) and these two equations are solved simultaneously

to get the updated values for the collective pitch angles (@i and @20) for the two

rotor systems. With these updated collective pitch angles, the blade equilibrium

equations, for the two rotor systems, are solved again to obtain a new set of

0 ! iequilibrium angles for the blade (B , _O' _0 ' i = 1,2). These equilibrium angles

of the blades are again substituted in the vehicle equilibrium equations to get

1 2
the second stage updated values for the collective pitch angles @0 and 80" These

Ii



steps are repeated until convergence is achieved• This procedure is also il-

lustrated by the following flow chart. A computer program implementing this

calculation for the trim (or equilibrium) position of the blade was developed.

A check on the number of iterationsnis provided in the computer program to avoid

excessive use of computer time in case of divergence.

False

_ i= 1
J

-I,

i

: Assume 0 0
L t

"L

Evaluate X.
1

using Eq. (2.11)

r
i Solve equations (2 •8) -(2.10)

i i i

iteratively for _0' _0' dP0
k,

,¢

i If i< 2
True

i= i+ 1

False

........ 4

Using _0' i qb0;_0' i = i, 2

solve equations (2.5)-(2.6)

1 2

for 8 0 and 8 0

Y Check for convergence• Convergence is

achieved if the differences between

1 2 5

initial and final values of @0 and @0 are< 1.0 x
i0

• True

r
!* S top

Flow Chart Illustrating the Solution Procedure for

the Blade Equilibrium Position
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The procedure described above is restricted to the case of hover where the

coordinates describing blade equilibrium are not time dependent. For the case of

forward flight, the equilibrium values will be time dependent and a more complicated

procedure, described in Ref. 4, is required to determine the trim quantities. The

basic difference is that, for the case of hover the trim values can be obtained by

solving a system of nonlinear algebraic equations, while for forward flight the

solution of a system of nonlinear coupled ordinary differential equations is

required.

2.3 Description of the Stability Analysis

The perturbational equations of motion, linearized about the equilibrium

position, can be written in the following form

[M] {q} + [C] {q} + [K] {q} = 0 (2.12)

where {q} contains all the degrees of freedom representing the blade motion,

the rigid body motions of the vehicle and the flexible modes of the supporting

structure.

The matrices [M], [C], [K] can be identified as mass, damping and stiffness

matrices respectively and the elements of these matrices are functions of the

equilibrium values.

The stability of the vehicle about the trim condition is obtained by solving

the eigenvalue problem represented by Equation (2.12).

(2.12) is written in state variable form

{y} = IF] {y}

where {y}T = L{yl}T, {y2}T_

and {yl} = {q} ; {y2} = {q}

For convenience Equation

(2.13)
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and

[F] =

-[]--M"-1 [C] I -1I -[M] [K]

I

[I] I 0

l
I

Assuming a solution of the form {y} = {y} e S@, Equation (2.13) reduces to a

standard eigenvalue problem

[F] {y} = S{y} (2.14)

The eigenvalues of Eq. (2.14) can be either real or complex conjugate pairs.

Sk = o k + i_ k (2.15)

The complex part of the eigenvalue (ak) represents the modal frequency and the

real part (o k ) represents the modal damping. The system is stable when o k < 0

and the stability boundary is given by O k = 0.

This relatively simple procedure can become complicated depending on the

form of the matrices [M], [C] and [K]. In the aeroelastic stability analysis

of isolated rotor in hover, these matrices contain constant elements. Thus

solution of this eigenvalue problem is straight-forward. However, in the case of

coupled rotor/body system stability analysis in hover or for stability of iso-

lated rotors in forward flight, these matrices will have elements which are time

dependent. The reason for the appearance of time dependent or periodic coef-

ficients, for these two cases, is different. For coupled rotor/body problem,

these matrices become time dependent due to the fuselage perturbational motion.

This fuselage perturbational motion introduces, through the hub motion, periodic

terms in inertia and aerodynamic loads of the blade. In the case of isolated

rotor in forward flight, these matrices become time dependent due to the per-

iodic a _-_.._.,_ excitation associated with forward flight.

When the coefficient matrices of the linearized perturbational equations

are periodic the stability analysis can be performed by applying

14



one of two possible techniques. One can use either Floquet theory or introduce

a multiblade coordinate transformation [Refs. 3,5]. For the coupled rotor/

body type of analysis in hover, which is the main objective of this study,

the multiblade coordinate transformation is successful in eliminating the

time dependent coefficients from the equations of motion. During this coordin-

ate transformation, the blade degrees of freedom in the rotating coordinate

system are transformed into a nonrotating hub fixed coordinate system. It is

worthwhile mentioning that this transformation is also frequently denoted by

the term Fourier coordinate transformation, Coleman transformation and more

recently rotor plane coordinate transformation.

The multiblade coordinate transformation is implemented by applying the oper-

ators, given below, to the blade equations.

N
i (.)N ""

k=l
collective operator

N

i Z (-1)k (''')
N k=l

N
1

_ cos n_k (...)
k=l

alternating operator

n-cosine operator

(2.16)

N
I

Z sin ( )n_ k ....
k--1

n-sine operator

where N is the number of blades

N-I

and n = I,....L L = 2 for odd N

N-2
L = for even N

2

The resulting equations are identified according to the operator used in the

transformation. These operators are applied only to the blade equations because

15



only the blade equations are written in the rotating coordinate system. The

vehicle equations are written in the nonrotating frame and in these equations,

rotor loads appear as a sum of various loads due to the individual blade. A

clear description of the theory of this transformation is presented in Refs. 3

and 5. A brief summary of this transformation is also given in Appendix A.

During the derivation of the final trim and linearized perturbation equations,

two items are noteworthy. First, in Ref. I, the blade loads are

derived for typical rotor blade rotating with angular speed _]. During

nondimensionalization of various quantities, the time is nondimensionalized as

= _t. When the general expressions for the blade loads are applied to two

different rotors operating at different values of _, then the nondimensional time

will be different for the two rotor systems. Consider the two rotor systems

R I and R 2 to be operating at angular speeds _i and _2 respectively. Then _i t

is the nondimensional time used in the rotor load expressions for the rotor system

R 1 and _2 t is the corresponding nondimensional time for rotor system R 2. For

the sake of consistency, the nondimensional time should be made the same for all

rotor systems. Assuming that _I is the reference R.P.M. for the non-

dimensionalization of time. Then the time derivative termswhich appear in the

blade loads of rotor system R 2 must be multiplied by a factor ( _2 )" The power

of this factor depends on the order of the time derivative.

A similar problem is also encountered when multiblade coordinate

transformation is applied to a multirotor system. In the n-cosine and n-sine

transformation Eq. (2.16), _k refers to the azimuth angle of the k th blade

_k = _t + 2_k/N (2.17)

where it is understood that _ is the angular speed or R.P.M. corresponding to

16



the particular rotor, and N is the numberof blades in the rotor system.

In the case of multiple rotor systems, this equation can be written for the

kth blade in the i th rotor system as

i 2_k= _.t + (2 .18)-k l N

th
Note that the above equation contains the R.P.M. or angular speed of the i

This value of _, Eq. (2.18), must be used in the n-cosine androtor system.
th

n-sine transformation operators for the i rotor system, and care should be

exercised whenapplying these operators in transforming the time derivatives

of the blade degrees of freedom. For consistency in nondimensionalization,
.ththe time derivative terms in the i rotor system are nondimensionalized with

respect to the reference angular speed _i of the rotor RI. These statements

imply that for multirotor systems the expressions provided in Ref. 3 and 5,

for transforming the time derivatives of the rotating blade degrees of freedom

to the nonrotating system, should not be used directly. The correct form for

implementing this transformation for a multirotor vehicle where each rotor is

operating at different angular speeds, i.e. _i and _2' is provided in Appendix B.

Consistency in nondimensionaiization of time and the multxu±aue uouLu±_aL= trans-

formation for multiple rotor systems can be both achieved by multiplying the first

and second time derivative terms, in the transformed multiblade coordinates for

_I _i 2

the i th rotor system by ( _. ) and ( _.. ) respectively, where _'1 is the i th
1 1

rotor R.P.M. and _l is the reference angular speed.

(2) The second noteworthy item is related to the rotor hub loads. When deriv-

ing the equations of motion of the vehicle, the rotor hub loads have to be eval-

uated. The rotor hub loads are obtained by summing up the contributions from the

individual blade loads. The expression for the individual blade load will have

the centrifugal term as the leading term, the order of magnitude of this

17



term is 0(i). After summingup the individual blade loads, the resulting hub

load expressions will have a leading term of order of magnitude 0(_) only,

because the centrifugal contributions from the blades cancel each other and

thus the net contribution due to these terms is zero. Therefore, care must

be taken to retain terms up to order 0(g5/2) in the individual blade load ex-

pressions, so that the resulting coupled rotor/vehicle equations of motion will

represent a consistent nonlinear mathematical model.

The two items, discussed above, have been carefully implemented in the

equations which have been derived in this report. Next these equations are

specialized to study air resonance type problems. For this class of problems,

it is commonpractice to suppress the vertical motion motion and the yaw

degree of freedom, thus in the final equations

.°

R = 0 , I_ = 0 , R = 0 (2.19)
ZS ZS ZS

and _ = 0 , _ = 0 , _ = 0 (2.20)
ZS ZS ZS

have been substituted. The final equations for the equilibrium position (trim)

and for the stability analysis are given in the next chapter.
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3. EQUATIONS FOR TRIM AND STABILITY ANALYSIS

In this chapter, the complete set of equations, used for the equilibrium

position and stability analysis, are presented. The linearized stability

equations are given in multiblade or rotor-plane coordinate system. This

chapter is divided into two major sections. In the first section, the equa-

tions pertaining to the twin rotor model (Fig. 2) representing an HHLA, are

presented. Two sets of equations are provided for the HHLA model: one for

articulated rotors and the other for hingeless rotors. The second section

presents the equations used for predicting the aeromechanical stability of

a single rotor helicopter in ground resonance, including the effect of the

aerodynamic loads.

3.1 Equations for Twin Rotor Model of an HHLA

The degrees of freedom included

an HHLA are listed below.

Blade degrees of freedom

i i Bi Bi
Flap BM ' B-M ' nc ' ns

i i i i

Lead-lag _M ' _-M ' _nc ' _ns

i i i i

Torsion _M ' _-M ' _nc ' _ns

in the analysis of twin rotor model of

i = 1,2 refers to the two rotor

systems R 1 and R 2

The subscript M refers to the collective mode, -M refers to the alternating

mode (only for rotors with even number of blades), nc refers to the n-cosine

mode, ns refers to the n-sine mode.

Rigid body degrees of freedom of the vehicle

X - Translat±on
KS

Y - Translation
ys

Roll 9
x

Pitch 9
Y
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Degrees of freedom for the flexible supporting structure

Bending in X-Y plane (Horizontal plane) R

¢2
Bending in X-Z plane (Vertical plane) R

Torsion _3

These degrees of freedom represent the three normal modes of vibration of the

supporting structure, two for bending in two orthogonal planes and one for torsion.

Thus the total number of degrees of freedom for a vehicle consisting of

two four bladed rotor systems is 31.

3.1.1 Static Equilibrium Equations (Trim Equations)

In the following, the nonlinear algebraic equations required for the calculatior

of the trim quantities, for ahovering vehicle, are presented. These equations are

i i i i and %. where i=1,2, refers to the
solved to obtain Bk0 ' _kO ' @kO ' 00 i'

two rotor systems. Since the form of the equations are the same for the blades

in both rotor systems R 1 and R2, only one set of blade equations is needed.

It should be noted that these blade equations are solved separately for each rotor

system with its own parameters. Furthermore for convenience in writing these equa-

tions the superscript, i, is deleted from the equilibrium quantities only.

Flap Equation

Bk0 FT(I'i) + _kO FT(2'i) + _k0 FT(3'i)

+ _kO _k0 FT (4,i) + _kO _kO FT (5,i) + _k0 _kO FT (6,i) + FT

i = 1,2,

FT(I,i) =

F T (2, i) =

refers to the two rotor systems R 1 and R 2

-2 (_ -2 %3 _2_F + sin2Oo + + e --- _V ) -3- 2

_4
(g_ - g_) sin@ 0 cos@ 0 + _ --$- B

P

(7,i) = 0

(3.1)
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Z4 _3

FT(3,i) = -_) ( -_- + -_- 2e )

_4

FT(4,i ) = _-

FT(5,i) = _ _2 _ (_2- _2) sin200

FT(6, i) =

_3

FT(7,i) = Bp( -_-

where

-2 KBB

eF -
m_2R 3

-2 -2

(eL - eF ) sin@ 0 cos@ 0

_2 _4 _3
+--_- e ) -'0 [ _ 00 +-_-- (-t.+2 e 00)

-2 K_B

ooL =
m_2R 3

= l-e

_2
eX]

e = e
R

OAabR
=

m

Lead-Lag Equation

/ _kO LT(I'i) + Bk0 LT(2,i) + _kO LT(3'i)

+ _k0 6kO LT(4'i) + _k0 _kO LT(5'i) + 8kO _k0 LT(6'i) + LT(7,i) = 0

LT(I,i ) _2 + (_L2 -2 in200 _2 _4 _3
= - - eF) s - -_ e + v(- -_ BpOO 3 2 % Bp)

-2 -2

LT(2,i) =_ (eL -eF ) sin@ 0 cosO 0

E3 E 2

eT(3,i) = v (- _- I - -_- I e)

(3.2)
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-2 _ -2 sin2@oLT(4,i) = - g2 + (_L _F)

LT(5,i ) (g_ -2 _4= _ _F) sin00 cos00 - _ _- _p

_3
LT(6,i) = v _- %

_4 _3 i3
LT(7,i) = _{ Cd0a( -4- + 2 _- e ) - --3 %00 +

_2
_- %(%-_00)}

Torsion Equation

_k0 TT(I'i) + _k0 TT(2'i) + Bk0 TT(3'i)

2 TT(6,i )+ _k0 _k0 TT(4'i) + _k0 _k0 TT(5'i) + _k0

2 TT(7,i ) + 2 3 _3 TT(9,i )+ Bk0 kO BkO _kO TT (8, i) + Bk0 kO

+ B2 TT(10,i) + 2 TT(II,i) + 2 _3 TT(12,i)k0 Sk0 6k0 _k0 _k0 Bk0 k0 _k0

3 TT(14, i) + TT (15, i)+ Bk0 _k0 _k0 TT(13'i) + Bk0 _k0 _k0 6k0 _k0

2 TT(16,i) + TT(17,i) = 0+ BkO _k0 _kO
(3.3)

TT(I i) = -2 _ -2 + _ (sin2O0 _ cos200)( IMB3 IMB2 )
, - _TI _T 2 mR 2 mR 2

i 2 i3 i2

+ _XA ( -3-+ 2 e )+ Xl sin00-2- Bp -_-

i3 _2 i2 i4 i3 i2

TT(2,i) = - Bp( -_-+-_- e ) - Xl sin00-2-+ _( -_ 00 +-3 (-1+2e00) - _-- el)

i3 IMB 3 IMB2

+ _A (- -_-_p) + i ( --mR2 cos2e 0 + mR 2 sin2@o ) _p

TT(3,i ) = _ _[--

i4 i3 _3
CdOa ( -4- + 2 -_- e) - _- %0

12 _2

- 2- l(-X+ee0)] - E-i -_-,'c°se0

-2

TT(4,i ) = WTI

i3 IMB 3

3 + %( _-- c°s200 + --

i4

mR21MB2 sin2O0)+ v -_- 6p00
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_3 _3
_ _ux A_-_ 2%Bp -_-

i2 _4 i3
TT(5,i) = - xI cos80 T + u ( _- + -_- 2 e )

_4
TT(6,i) = - _ Bp 4

_4 _4 _3
Tr(7,i) = -V 4 U[ Cd0 ( _-+ 2 e )-- - --7- T

_4 i3

TT(8,i) = - _(- T 80 + 2 _- % )

i4 i3

TT(9,i) = u-_- Bp80 - u T 2 % _p

_4 i3

TT(10,i) = - u (- T 80 + 2 -_ %)

_4

TT(II,i) = u-_-

_4

TT(12,i) = u-_-

_4

TT(13,i) = u_- Bp

_4

TT(14,i) = u-_- BP

i3 i2

TT(15,i) = v ( _- I + T X e )

TT(16,i) = _ ( -_- I + X e )

_2

TT(17,i) = xI cos80 [- Bp( T + [ e)] + i [-(

[3 _2

- T 8o - T ]

l_m3 IMB2

mR 2 mR 2

O0 + T (-'t+ 2 e 8 0 ) - e #,t)

) sin8 0 cos8 0]

Equations (3.1)-(3.3)are valid for both articulated as well as hingeless blades.

For articulated rotors _F = 0

_L = 0
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and

For hingeless rotors

_OTl= 0

-2 K!_-
_OT2 - n_Q2R3

-2
_°T1 m_Q2R3

K_BK_ C

; K_ = K_B+K_c

and _T2 = 0

In the above blade equilibrium equations, the inflow ratio % is [Ref. 3]

l i. 5e 0oa

% -- i--6 ( - i + _i + (oa/16) )
(3.4)

Force Equilibrium Relation

For hover, the thrust developed by the two rotors and the buoyancy force

on the envelope must balance the weight of the complete vehicle. Also, the

pitching moment due to the various forces about Y-axis (Fig. 2) must be

zero.

[
i=l

N i3

m_2R2 { _ [ T ( 6o + _kO - _kOSp - _kO 8kO )
k=l

_2

+T (-l+ 2 ee 0 + 2 e _k0 ) - _ el] } ]i

S
+ PZ - ( WFI + WF2 + WUN + WEN + WS) = 0 (3.5)

Moment Equ ilib rium Relat ion

2 N

E [- _Fi { E
i=l k=l

_3

n_2R3 <_ [ T (e0 + _k0 - _k0Bp - _k0 6k0)

_2

+T (-%+ 2 e 80 + 2 e _k0 ) - _ el] > } ]i

+ IFl WFI + IF2 WF2 + h5 Ws = 0
(3.6)
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In equations (3.5) and (3.6) the symbol 'i' outside the brackets indicates

that all the quantities within the bracket refer to the i th rotor. The

quantities within the bracket can be different for different rotor systems.

In total, these are eight equations, three blade equilibrium equations

for each rotor (total 6) and two vehicle equilibrium equations. As explained

in the previous chapter, these equations are solved iteratively to obtain
i i i

the equilibrium state. The solution consists of 8k0 , _k0 ' _k0 '
i

e0 ; I -- 1,2, these equilbrium quantities are the samefor all the blades

in one rotor system.

3.1.2 Stability Equations

The equations of motion for the blade as well as for the vehicle are

linearized about the equilibrium state. These linearized equations are then

transformed into multiblade or rotor plane coordinates. The final linearized

equations, written in the multiblade coordinates are given below.

Collective Flap Equation

i i Fc(2,i ) + i6M Fc(l'i) + _M _M Fc(3'i)

"i "i+ Fc(4'i) + _M Fc(5'i) + _M Fc(6,i)

Fc(7,i) + 0 F (8,i) + _2
OO i

+ 6M y c R- Fc(9'i)

"" _2

+ Oy Fc(10, i) + _- Fe(ll,i) = 0 (3.7)

th
i-- 1,2 refers to the i rotor

Fc(l,i) = _2 + (_ _ _) sin2e0 + _kO (_ _ -2_F) sine 0 cose 0

i4 i3 _2 _

+ _T _kO + T + -_- e

Fc(2,i) -- _kO { _ + (_ -2 -2 -2_ _ _F ) sin2e0} + (eL - _F ) sine 0 cosO o
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i 4
+_-_- (8p + Bk0)

Fc(3,i) = - _k0 { _2 + (_2 _ _2) sin2eo } + 8k0 (_ - -2_F ) sin@ 0 cos@ 0

i3 14

- 2 e-

i4 i3 _i

Fc(4'i) = (gSF + V-4- + _)-3- e) _?.
1

_3

Fc(5,i) = [2 -_-

i3 I _3 _i

Fc(6,i ) = [- _- b - _ _)b _- cos00 ] _--?
I

i3 _I 2
13 i _-3- _ cos80 ] ( _. )Fe(7,i ) = [ -_- +

1

_ _3 _I

Fc(8'i) = - EFi _)-3- ( _?. )
i

Fc(9,i ) = n2 (_Fi) V-_- _.
i

_ _2 _i 2

Fc(10'i) = - _Fi -_ ( _. )
1

i 2 _I 2

F (ll,i) = _2(_Fi) -i- ( _?. )
C

i

i4 i3 _i

(8k0 + 8p) - 2v_- (@0 + _k0 ) + 9-_ %] _i

It should be mentioned that the angular speed _ can be different for the two

rotors, and thus the blade static equilibrium represented by 8k0' _k0' _k0'

80' _ can differ from one rotor to another. Thus the coefficients Fc can

be different for the two rotors, Actually Eq. (3.7) represents two equations,

one for each rotor system.

Alternatin_ Flap Equation (For even N only)

i i FA(2,i ) + iB-M FA(I'i) + _-M _-M FA(3'i)

" i FA(4,i ) + " i FA(5,i ) + $-M FA(6'i)+ B-M _-M

"" i FA(7,i ) = 0+ B_M
(3.8)
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FA(i,i)= _2 + (_ -2 (_Z _ _2°_F) sin200 + _k0 _F ) sin00 cos00

i4 i3 _2

+ v-g- _kO + -]- + _- e

FA(2'I)=- _k0 { _2 + (g2_ -2C0F) sin200 } + (_2 _-2_0F) sin00 cos00

i4

+ V-_-- (Sp + Bk0)

_F ) sin200 }

14 13 _1

FA(4'i) = (gSF +_4- + V T e) _

+ f_kO((T_ _ -20oF) sinOocosO 0

i3 i4

- vT 2 e - v T

i3 i4 i3 fll

FA(5,i) = { 2 -_- (Bk0 + Bp) - 2 v _- (@0 + _k0 ) + _ -_ % )_.

i3 1 i 3 f_l i

FA(6'i) = {- _- b - 7 X_ b-_-- cos00 } __
l

i3 1 i3 f_l 2

FA(7,i) = {-_- + y _ b -_- cos80 } (_)
l

n-Cosine Flap Equation

Bni Fc(l i) + _i F (2 i) + i i Fnc(4 i)c ' ns nc ' _nc Fnc(3'i) + _ns '

• Vnc

"i

+ _nc

+e F
y nc

"nc _ ' Vns Fnc(6 i) + _ F (7,i) + _ t_ i)' Wnc nc _ns _nc x''

"i 8i ""
Fnc(9'i) + _nc Fnc(10'i) + Fnc(ll,i) + 0nc Y

Fnc(14'i) + Rys Fnc(15'i) + _-

+ _3 Fnc(17'i) = 0

(13, i) + 8
x

,-2 ZFnc(1 i) -- eF + (_ -2, - _F )

i4

+ _-g- _kO + T + Z- g

Fnc (12, i)

Fnc (16, i)

(3.9)

sin200 + _kO(_L2 _ _2 ) sin80 c°sO0

i3 i2 2 _3 2 1 i 3

- n _- - n 7 _ t_ _ cos00
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i4 i3 e + gSF)
Fnc(2,i ) = n( _0-_ + _--_

- WF) sin200 } + (mL - t°F) sine0 c°se0

_4
+ V-_- (Bp + _k0 )

_3 i4 _3

Fnc(4,i ) = n { 2 _- (Bk0 + _p) - 2 v _- (e0 + _k0 ) + _ -_ % }

-- + s n00
i4 _3

- _ 4 V-_ 2 e

i3 i _3

Fnc(6,i ) = n {- V-_ b - _ _ _ _- c°s_0 }

Fnc(7,i) _- {_ _-- + _-_ e + gSF } _i

Fnc(S,i ) = n { 2 _- + _ 2 _ -_ b cose 0 } _i

i3 i4 i3 _i

Fnc(9,i) = { 2 -_ (Bk0 + _p) - 2 _ _- (@0 + Ck0 ) + _ _- % }_i

13 I 13 nl

Fnc(10,i) = { - _ -_ b - _ _ _- b e°SOo } _i

i3 i i3 _i 2

Fnc(ll,i) = { -3 + _ _-_ b c°S@O } ( _i )

13 _i 2

Fnc(12'i) = - 6n -_ ( _i )

i4 n I

- vT n-7Fnc(13,i) = 6n
i

i3 i3 _2 n I

2-_-+ 6 2V-_- e0E2 - h2 vT X 6n } h_.
Fnc(14 ,i) = { + 6n n I

i3 12 n I

Fnc(15 i) = (- 6 2_- e0 + _ -_ % _ ) ___El
' n i

13 E2 el

2 _-_- 00 nl(_Fi) + nl (_Fi) _-2- k _n ) _.
Fnc(16'i) = (- _n l
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_3

Fnc(17,i) = ( 6n 2VT

where

6 = 1 when n = 1
n

= 0 n# 1

_2 _i

80 h2 n3 (ZFi)- h2 q3 (EFi)_ _ _- X _n ) ___
I

n-Sine Flap Equation

_nsi Fns(l,i) + 8inc Fns (2'i) + _nsi Fns(3'i) + _nci Fns(4,i)

•.+ _nsi Fns(5,i) + _inc Fns(6'i) + _mns Fns(7'i) + c Fns (8'i)

"i Fns(9,i) + "i ii ""+ _ns _ns Fns(10,i) + ns Fns(ll'i) + @x Fns(12'i)

• " " _2

+ @ Fns(13,i) + @ F (14,i) + R Fns(15 i) + --R- Fns(16,i ) = 0x y ns xs '
(3.10)

-2
Fns(l,i) = _2 + (_2 _ _0F) sin200 + _k0 (_ _ -2_F ) sin@ 0 cos@ 0

i4 _3 _2 2 i3

+ _T _k0 + T + T e - n 3

1 E3 2

2 v B T n c°s00

14 i3

Fns(2,i) = n { - V T - 9 T _ - gSF }

Fns(3,i) =- _k0 { _2 + (_- _2)sin2@0 } + (_

E4

+_-%-

i3

Fns(4,i) = n {- 2 T (Sk0 + 8p)

-2
- _F ) sin@ 0 cos@ 0

(Sp + 8k0 )

E4 %3

+ 2 V T (80 + _k0 ) -UT _ }

Fns(5,i) =- _k0{_ + (_ _ -2_F ) sin200 } + Bk 0 (_ _ -2_F ) sin@ 0 cos@ 0

i _) -- --

E4 _3

4 V T 2 e

13 I _3

Fns(6,i) = n {vT b + _ _ _ T c°s@o }

14 i3 - _1

Fns(7'i) = {_ T + _ T e + gSF } _.
1
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_3 _I
_3 1 2 _ b cos8 0 }Fns(8,i) = n{- 2 3 2 _- _T

1

_3 _4 _3 _i

Fns(9,i) = { 2 _- (8k0 + 8p) - 2_- (@0 + _k0 ) + _ T _ } _-_
1

_3 I _3 _i

Fns(10,i) = { -_T _ - 2 _ _ -_ c°s@0 } _T
1

_3 I _3 _i 2

Fns (11'i) = ( T + _ _ _ T c°s@0) ( _T )
l

_3 _I 2

Fns(12'i) = + _n T ( _?. )
1

14 _i

Fns(13'i) = 6n _ -4- ( _T )
1

E3 E3 E2 _I

2 + 6 2_ 80 52 - h2 _ %6n } --Fns(14'i) = { + 6n T n T -2- _.
i

i3 %2 _i

Fns(15,i ) = (6n 2 _- @0 - _ -2- % _n ) _.
i

13 12 _i

Fns(16,i) = R{ - 6n 2 _T @0 h2 D2,x (%i) + h2 D2,x (_i) _T %_n } _i

Collective Lead-La$ Equation

i Lc(2,i ) + i_ Lc(l'i) + BM _M Lc(3'i)

"i "i+ Lc(4'i) + BM Lc(5'i) + _M Lc(6'i)

+ Lc(7,i) + BM Lc(8,i) + @y Lc(9,i) + -_- Lc(10,i) = 0 (3.11)

L (l,i) _2L + (_ -2c = - - _°F) sin2@o + _kO (_2 _ O_F)-2

12 i4

2 e- _- @0Bp

sine 0 cos@ 0

Lc(2,i) = - _k0 { _- (_2- _2) sin2@0 }- (_ _ _) sin@ 0 cos@ 0

Lc(3,i) = BkO{_- (_ _ -2- _F) sin2@ 0 }+ _k0 (_ - -2_F ) sin@ 0 cos@ 0
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L (4,i) = {- 2_
c

L (5,i) -- {2 13
c T

L (6,i) = i i3c -_,F_ T

i3 _I 2
L (7,i) : ( )c 3

1

c dO i4 i3 _1

a 4 "-3- O0l- gSL } _.
l

i4 i3 _I

(6k0 + 6p) - v T (80 + Ck0 ) - v T (-2% + e 80) } _..
1

sinO 0 ___
1

L (8, i) = 1 i 3 _1 2
c y vb T sine0 ( _. )

1

_ _3 i2 QI

L (9 i) - { -v (e0+¢k0) + V 2 % }_i
c ' = £Fi T T

i3 i 2 nl
L (10,i) = q2(£Fi) { -V-_- (O 0 + Ck0 ) + v T 2 _ }_.C

l

Alternating Lead-Lag Equation (for even N only)

i LA(I i) + i LA(2,i ) + i_-M ' 6-M ¢-M LA(3' i)

• i LA(4,i ) + " i " i_-M 6-M LA(5'i) + ¢-M LA(6'i)

°°

i
+ _-M LA(7'i) + 6-M LA(8'i) = 0 (3.12)

LA(1 i) = - _L2 + ( _Z _F2) sin200 + $k0( _ -2, - _ _F ) sine 0 cosO 0

i2 i4

2 e -vT 6p00

LA(2,i) = - qbkO { _- (_ -2_0F) sin200 } _ (__-2 _F ) sin@ 0 cos@ 0

LA(3,i) = - 8k0 {
-2
_°L- (_- _)sin2Oo } + _kO (_Z -

i3
- .Tx

_) sin00 cosO 0

LA(4,i) = { - 2 _ cd0 i4 i3 - fll
T T -'_T 80 _k - gse } _.

l

i3 i4 i3 _I

LA(5,i) : { 2 T (6k0 + 6p) - v T (e 0 + Ck0 ) - v T (- 2%+ee0) } _--?
1
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1

LA(6 ,i) = - _ _)

_3 _ql

LA(7,i) = _ -_ ( _?. )
1

LA(8, i) =

13 f21

3 sinO0 _.
1

2

1 i3 D1 2

_ V b _- sing 0 ( _. )
1

n-Cosine Lead-Lag Equation

i i Lnc(2,i) + 8 i Lnc(3,i) + _i Lnc(4,i)_nc Lnc (l'i) + _ns nc ns

+< +nc _ns Lnc(6,i) + c Lnc(7'i) + _ns'i Lnc(8,i)

"i "i
+ 8nc L (9 i) + L (10,i) + "i "'i

nc ' _ns nc _nc Lnc(ll,i) + _nc Lnc(12'i)

•..

+ _z Lnc(13 i) + @ Lnc(14,i) + @ Lnc(15 i) + 8 Lnc(16,i)nc ' X y , y
,t

• . em

_z
+ Rys Lnc(17,i) + Rxs Lnc (18'i) +-R-_I Lnc(19,i ) + -R Lnc(20'i)

°°

+ _3 Lnc (21'i) = 0

L (l,i)=- _ + (_Z _ -2nc _F) sin2@0 + _k0 (_Z - -2(-OF) sin@ 0 cos@ 0

i2 2 i3 _-4

2 g+n -_- - _ _- Bpe0

L (2 i) = -n {2 _ cd0 i4 i3
nc ' -7 -_- + V-_- @0 I + {SL }

-2
Lnc(3,i) = - CkO { _L

i3
L (4 i) = n{ 2 _--_-
nc

_ (__-2 -2 -2
_F) sin200 } - (_L - _F ) sin00 c°s@ 0

1 _3 2

- _ _b -_- sin@ 0 n

i4 i3

(Bk0 + 8p) - v _- (80 + Ck0) _ _ -_- (_ 2 I + e

Lnc(5,i) = - Bk0 { _ _ (_Z - -2(OF) sin2@0 }+ _k0 (_ - -2(-OF) sinO 0 cos@ 0

(3.13)

oo) )
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Lnc (6, i) I _3

2 -_ sin@ 0 n

Lnc(7,i) = { - 2 v Cd----q0 i4

a 4

Lnc(8,1) -- - 2 n

3
l

L (9, i) =
rlc

[3 - _I
-_-_ >,o ° }

- gSL _.
l

L (I0, i) -._
nc

{2 -5-- (_kO + _p) - v 7 (% + CkO) - _ -5- (-2 _ +_ %) } n--'?-
1 _3 _1 1
_b -5- s_nOo 2 n e-7

L (11 _) - 1 g3 nl

nc ' - - _-u g T sine 0 n_.

Lnc (i 2, i) = _3 _I 2

- '5- (_..)
1

L (13,t)_- i _3 _1 2
nc _ v ff._- sine 0 ( _. )

l

g3 _,2 _21
L (14 i) --{ _ + _kO) + d 6"2 2
nc ' n -3- (_p n -_" } ( _- )

g2
Lnc(15, i) = 6 _ if2 ( al )2

n 2 _kO
1

L ;i ,. . _4
t_6,x) = i_'_ "^

nc n -4- kV 0 + _ '•kOj -
g3 _t

aw _.

_2 _1 2 1
Lnc(17,i ) _- _

n_- (_i)

_2 al
Lnc(18,i) -- dn _ _kO ( _ )2

L (19,t)= _ _ g2
nc

n _- rl 1 (£Fi) ( _i )2

Lnc(20, i) -- - _ _,2
_1 2

n 2 _kO if2 _2,x (_i) R (_.)
%2 z

(21,i) = d _ if2 _21 2
n 2 n3 (_Fi) (_)

L
nc
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n-Sine Lead-La$ Equation

_nsi Lns(l,i) + _nci Lns(2'i) + Bins Lns(3,i) + 8inc Lns (4'i)

i "i Lns(7,i) + "i+ _is Lns(5'i) + _nc Lns (6'i) + _ns _nc Lns(8,i)

+ s Lns(9,i) + Lns(lO'i) + nsl Lns(ll,i) + _ns Lns(12,i)

0, ° ., o°

1

+ Bns L (13,i) + e Lns(14,i) + e Lns(15,i ) + @ Lns(16,i )ns y x x

.... $i _2

+ R L (17,i) + R Lns(18'i) + R -- Lns(20'i)xs ns ys -- Lns(19'i) + R

°°

+ _3 l'ns(21'i) = 0 (3.14)

Lns(l i) = _2 + (_ -2' - - _F ) sin2e0 + _k0 (_ -2- _F ) sin@ 0 cos@ 0

_2 i3 2 14

2 e + _- n - _ _- 8pO 0

L (2,i) = n{ 2 _)
ns

cdO _4 i3

a 4 + _- _80 + {SL }

Lns(3,i) = - _k0

L
ns

_F ) sin2@o } _ (_ _-2_F ) sin@ 0 cos@ 0

I E3 2

- _ _ b _- sin80 n

i3 _4 _3

(4,i) = n { - 2 -_ (Sp + 8kO ) + _- (80 + _kO) + 9-_ (-2 _+ e@o) }

Lns(5,i) = - 8kO

1
Lns(6,i)__ = _ v

L (7,i) -- { - 2 V--
ns

_F ) sin280 } + _kO(_L _ _2) sin@ 0 cos80

E3
- _-_- _

E3
_- sin8 0 n

c dO E4 13 _ i

a _- - v _- I e0 - gs L } _
l
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_3 _1
Lns(8,i) = -_- 2 n _.

I

_3 14 E3 _I

Lns(9,i) = { 2 T (8p + 8k0) - _ -4- (O0 + Ck0 ) - _T (-2 %+ eOo)} _.
1

n (I0, i) = 1 _3 _I
ns - _ _) _ _- sin00 2 n _.

1

Lns(ll,i)

_3 f_l
L (12 i) = -_ ( )
ns ' 3 _.

i

t 13
Lns(13,i ) = _ _) b -_-

1 i3 f21

= -yv gT si_eo _.
1

2

_i 2

sine o ( _. )
1

i3 i2 _I )2
Lns(14,i) = { 6n -3- (6p + 6k0) + 6n _- h2 } ( _.

1

E2 _i 2

Lns(15 i) = - 6 52 ( )' n T _k0 _.
1

_4
Lns(16,i) = { - 6n v-_- (e0 + Ck0 ) + 6n

i2 _I 2

Lns(17'i) = _n 2 ( _. )
1

i2 _I

Lns(18,i) = 6n 2 (k0 ( _?. )2
l

T J _) J-J _" U

_ns _ n -2 _k0 'II (_Fi j' ( _. )
"I

i2 £1 2

Lns(20,i) = - 6 E 2 R ( )n T q2,x (£Fi) _.
1

_2 _i 2

Lns(21 i) = - 6 -- h2 Q3 ( )' n 2 _kO (_ Fi) _?.
1

i3 f21

T2 Xv} _--_-.
1

Collective Torsion Equation

CM Tc(l'i) + 6M Tc(2'i) + Tc(3'i)
¢

"i "i+ CM Tc(4'i) + 8M Tc(5'i) + Tc(6'i)

"i
"i _i Tc (8,i) + Tc (9,i)+ CM Tc (7,i) + '-M _M
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• °°

• _2 "" _2

+ Oy Tc(lO,i) + -_- Tc(ll,i) + @y Tc(12,i) + --R T (13,±) = 0
c

(3.15)

T (i,i) = TI
c

T (2,i) = T2
c

T (3,i) = T3
c

T (4,i) = T4 --
c _i

T (5,i) -- T5 ____i

c _i

r (6,i) = T6 7C
i

_I 2
T (7,i) -- T7 ( )c

i

_i 2
T (8, i) -- T8 ( )

i

_I 2
T (9, i) = T9 ( )

1

T (10,i) = - TI8 --
c - %Fi _.

l

T (ll,i) _2 TI8 --c = (iFi) _.
1

_I 2

Tc(12'i) = - _Fi T21 ( _. )
l

T (13,i) n2 T21 ( )2c = (£Fi) _?.
i

Alternatin$ Torsion Equation (For even N only)

i i TA(3 ,i)_-IM TA(I'i) + 8-M TA(2'i) + _-M

"i "i TA(6,i )$-IM TA(4'i) + 8-M TA(5'i) + _-M
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'i_M TA(7,i) + _M

TA(1,i) = T1

°- °

1

TA(8,i) + _-M TA(9,_) = o
(3.16)

TA(2 ,i) -- T2

TA(3,i) = T3

TA(4,i) = T4 _

TA(5,i) --_S _7.
1

TA(6,i) -- T6 _.
i

TA(7,i) = T7 ( _. )2
l

TA(8,i) = T8 ( _i )2

_I )2
TA(9,i) = T9 ( _.

i

n-Cosine Torsion Equation

i
eric T (l,i) + Cns T

nc nc(2,i ) + 8i Tnc(3,i) + 8i T (4,i)
nc ns nc

i

+ _nc
i (6,i) + "i _Tnc(5'i) + _ns Tnc _n¢ Tnc(7,i)+ s Tnc(8'l)

+ (9,i) + (lO,i) + TTnc s Tnc _nc
nc(11'1) + _nis Tn c(12,i)

oo
+ Cnc Tnc(13,i) + nc Tnc(14,i) + nc Tnc(15,i) + 0

X
°o

• °°

+ 8 T (17,i) + 0 T (18,i) + 0 Tnc(19 i) + _y nc x nc y ,
XS

Q

+ Rys Tnc(21'i) + Rxs Tne(22,i) + R
ys Tne (23, i)

Tnc (16, i)

T (20, i)
nc
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oo

_i _2

+ -_ T (24,i) + _ (25,i) + {3• nc R Tnc

q •
+ -R Tnc(27'i) + R- Tnc(28'i) + {3

T (l,i) = TI - n 2 T7
nc

Tnc(26,i)

Tnc(29,i) = 0 (3.17)

Tnc(2,i) -- n T4

Tnc(3,i) = T2 - n 2 T8

Tnc(4,i) = n T5

Tnc(5,i) = T3 - n 2 T9

T (6,i) : n T6
nc

Tnc(7,i) = T4 _-_
i

T (8,i) = 2 n T7
nc _.

1

T (9,i) = T5 --
nc _.

l

T (10,i) = 2 n T8 _--nc
1

n1

Tnc(ll,i) -- T6 _.
I

nI

Tnc(12 ,i) = 2 n T9 _.
]i

nz )2
Tnc(13,i) = T7 ( _.

i

nz )2
Tnc(14,i) : T8 ( _..

1

T (15,i) = T9 ( )2
nc h_.

1
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T (16,i) ={ _ TI3(1) - h2 _nc n n

T (17,i) ={ _ TI4(1) + h2 _nc n n

rnc(18,i) ={ _ rlO(1) - h2 _ TI7(1) } --n n _.
1

TI6(1) } _.
I

T20(1) } ( _. )2
l

S21 2

TI9(1) } ( _. )
l

Tnc(19 i) :{ _ TII(1) + h2 _n n

Tnc(20,i) = TI9(1) _n ( _. )2
1

T (21,i) = T20(1) _ ( )2
nc n _i

Tnc(22,i) = r16(1) _n (_i)

Tnc(23,i) = TIT(1) _n ( _. )
1

nz )2
Tnc(24'i) = nl(_Fi) _n T20(1) ( _.

1

Tnc(25,i) = - h2 n2, x (£Fi) TI9(1) _n R (_i

nl )2
Tnc(26'i) = - h2 n3 (£Fi) T20(1) _n (_.

i

I

Tnc(27,i) = nI (IFi) TI7(1) _n _.
1

Tnc(28'i) = - h2 n2, x (£Fi) TI6(1)

Tnc(29'i) =- h2 n3 (£Fi) TI7(!)

_nR _i

n f_i

n-Sine Torsion Equation

i Tns(2,i) + i 8i_is Tns(l'i) + _nc 8n s T (3 i) + T (4,i)ns ' nc ns

i i+ + ++ _ns Tns _nc Tns ns ns
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ns ns c

+ i T (13,i) + _i T (14,i) + i T (15,i) + @ T (16,i)
ns ns ns ns ns ns y ns

• t • •

+ @ Tns(17,i) + e Tns(18,i ) + @x y x Tns(19,i) +
ys Tns(20,i)

oi

+ R Tns(21,i) + R Tns(22,i) + R Tns(23,i)xs ys xs

_i _2 Tns(25'i) + _3 Tns(26'i)+ _- Tns(24,i)+ -_-

•
+ _- Tns(27,i) + _- T (28,i) + _3 (29,i) = 0ns Tns

Tns(l,i) = T1 - n 2 T7

(3.18)

T (2,i) = -n T4
HE

T
ns

(3,i) = T2 -n 2 T8

T (4,i) = - n T5
ns

Tns(5,i) = T3 - n 2 T9

T (6,i) = -n T6
ns

T (7,i) = T4 _.ns

l

Tns(8,i) = -2n T7 _.

Tns(9,i) = T5 _--_
1

T (10,i) =-2n T8 --
ns _.

1

T (ll,i) = T6

ns _i
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Tns(12,i) = - 2 n T9 _?.
l

T (13,i) = T7 ( )2
ns _ii

T (14,i) = T8 ( _i )2
ns h_.

1

)2
Tns(15,1) = T9 ( _.

1

Tns(16,i) = {_ T14(2) + h2 _n n

Tns(17'i) = {_n

T (18,i) = {6
ns n

T (19,i) = {6 TI0(2) - h2 6ns n n

T (20,i) = _ T20(2) ( _i )2

ns n _i

Tns(21,i) = 6 T19(2) ( )2n _?.
I

Tns(22'i) = 6n T17(2) _-_
l

Tns(23,i) = 6 T16(2) ---- n _
1

T19(2) } ( _. )2
1

_i )2
T13(2) - h2 _n T20(2) } (._?.

1

Tl1(2) + h2 6 T16(2)}
1

T17(2)} a'-_
I

Tns(24,i) = NI(£Fi) T20(2) _n ( _. )2
l

rns(25,i) = - h2 q2,x(IFi ) T19(2) _n R ( _ )2

Tns(26'i) =- h2 n3 (£Fi) T20(2) _n

1

Tns(27'i) = ql (IFi) T17(2) _n

_i )2

1

f2.
1

Tns(28'i) = - h2 n2,x(iFi) T16(2) _n
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T (29,i) = - h2 q3 (IFi) T17(2) 6 --ms n _.
1

The various coefficients for the torsional equations are:

rl -2 -2 i2 i 2
= - XI sin@o- _TI _T2 2 _k0 XI c°s@0 + T Bp

+ (l-e) [ IMB3 IMB2
mR 2 mR 2 ] (sin280 - coS2eo)

14 13 14

+ _kO ( -%- +-3- 2 e ) + _BkO (i + _20)[ -%- _kO (BkO+Bp)

13 E 2

+ -5-x + Tx_ ]

13 12

+ _XA (-_ + -_- 2 e )

-2 %3 IMB 3 IMB 2 %4 _2
T2 = _TI _kO 3 _kO + _kO (l-e) [ _ c°S2Oo + -- sin2eo] - _mR 2 T kO

%4 %3 %2

+ _BkO (1 + _20)[ -_- _kO (80 + CkO ) - 2 -_- %_kO ] - T Xl c°sSo

- _(1 + _20){ cdO %4 %3 %4
- -_ (-_- +-_- 2 _) --_- _kO (Bko + Bp)(80 + CkO )

%3

- -3- % (00 + CkO - 2 _kOBp - 2 _koBko )

E2 %3

+ T _" ( % - e (00 + CkO )) } - _ XA -3- _kO

r3 = -2 _3 %2 E3 %2 i2
_TI Bk0 - 6p( _- + T _) - Bko 3 2 Ck0 XI c°Seo - -_ Xl sineo

+ Bk0) [ IMB3 IMB2 14
+ (l-e)(Bp _ cos2eo + _ sin2e 0 ] -v _kO(Bp + Bk0 )mR 2 -4-

_4 _3 i2 _

+ _[ -4- (eO + CkO - _kOBp - _kOBkO ) + -3- (-%+2eeO+2eCkO) - T e %]

i_' i3
+ _Bk0 (I + _20) [ _- (Bko + Bp)(00 + CkO) - 2 -_- % (6p + BkO)]

- _2BkO_kO { CdOa ( _- + _- 2 e) - _- _kO (6kO + Bp)(e 0 + CkO )

E3

- -3- % (80 + CkO - 2 _kOB p - 2_kOBkO )
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T9-

_3
i _ cos00

+ (l-e)_k0 [ _23 c°s200 +_ 22 sin29° ] - _ _k0-_

+ _k0 c°s00) - _ (XA-2 ) -_-
13

i (i + _20) -_ (sin00
- y. _ Bko

i3 i2 i2

3 _k0 + -_ _k0 XI c°s00 + -_ XI sin60
i 3

i _20) -_ @0sin00
IMB2 sin2@0 ] +_ _ b Bk0 (I +

+ (l-e) _k0 [ IMB---_3cOs200 +_-_
mR 2

i2 _2 - -
_3 - 2e - 2 XI c°s00 - 2 % e X I cos00

TI0(1) = - 2 -_ _k0 _- _k0 _-

12 IMB 3 IMB 2
+-_ 2_k0 XI sin00 + 2_k0 (l-e)[ _-- c°s200 + _ sin2_0 ]mR 2

13
14 i _ sine 0 ]

+_k0 (i+ _2o) I-g- _k0e0- Y -_

12
_3 2 + 2 XI c°s00

Tio(2) = 2-_- Ck0 -i- _k0
14 13
-- -,_E A y

+ 2 (l-e) [ IMB3 c°sZ@
mR 2 0

_4

+ _Bko (I + _2k0)[ _-

IMB2

+_-_ sin2@0 ] - 9_k0 4

-3

(00 + _k0) - 2 _ (% - e00) ]
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IMB 3 IMB2
- (i-_) [ + ]

mR 2 mR 2

_3 i2 i2

T13(2) = - _- _kO - -_- e _kO 2 XI c°se0 - £ e X I cosO 0

_2 IMB 3

+ -_ _k0 XI sin@0 + (i - e) _k0 [ m--_-- c°s2@0 +--

z _o) g 32 V b 8k0 (i + sin00_ -- _-

IMB3 sin2@0 ]
mR 2

TI4 (1) :

_2 IMB 3

_- _k0 XI sineo - (l-e) _k0 [ _-2-- c°s280
+--

+ y v b Bk0 ( i + _ 0) T sin00

13 2 + 8k0) i3
T14(2) = - _- _k0 - Sk0 (Sp 3

IMB 3 IMB2

- (l-e) [ 2 + mR 2 ]
mR

2 _3

T16(1) : - _BkO (i + _kO ) -_- O0 (Bp + _kO )

T16(2) = - v%kO--3 2 80 - vBkO (1 + _ 0 ) [2 cdOa %33
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R__id Body Equations
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where W = WFI + WF2 + WUN + WEN + W S

y-Translation
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g ys

It should be noted that equations (3.7) - (3.20) are valid for both

articulated and hingeless rotors.

For articulated blades, the following quantities should be set equal to

zero.

_F - -= 0 , e L = 0 ' eTl = 0

while for hingeless blades

_T2 : 0

Depending on the type of rotor, articulated or hingeless, the appropriate
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substitutions indicated above, have to be made in Eqs. (3.7) - (3.20) and the

resulting equations represent the linearized stability equations. The equations

for pitch, roll and the supporting structure elastic modes, presented in the

following pages, are different for the case of articulated or the case of

hingeless rotors. This difference is primarily due to the terms representing

the transfer of moments at the hub due to the blades. In articulated rotors,

without lag dampers or hinge springs, flap and lead-lag moments at the hinge are

zero, whereas in the case of hingeless rotors, these moments are nonzero. Hence,

two sets of equations have to be given. These equations are provided below and

they are identified as applicable to "Hingeless Rotors" and "Articulated Rotors"

respectively.

Hingeless Rotors

Roll

2

N _ { m_2 R 3 i Cd0 14 i 3 - i 4 i3
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(3.21)

Pitch

N
2

i--i

- h2 ( _ -- (290 + _k0 ) - _- _P

i Cd0 14 13

+ 61s< v a 4 + v-f

13
+ h2 (6p _-_- +

E 3 14
2 2 R 3 6i 14 14 I _ cose 0 ___ 26k080
E {m_ i [ ic <2_- _kO -_-- (6p+_k0)e0 - 2_ _- -

12 12
- _26,_ + _-=- (-21 + e0^) -_-_- I)

F_U L k/ /

_ i4 i3 _

I00 + gSF + v _ + 2 _-_ e

13 13 1 E2

6k0 _ -_ + _- _k0e0 + 2 _ b T sineo) >

i %4 - _4

+ _ic < - _ T _k0 280 - 6p gSL + _ -_ (Bp + 6k0)

Cd0 i3 _2

a 3 _ -2 le0) >+ h2 ( 12 _k0 - 2

14 13
+ _isi< _ _ -_ (@0 + _k0 ) + h2 _ -_ (-6p + 6k0 ) _0 >

51



i - i 4 _3
+ _ic < gST - _ -_ - _ _- 3 e - h2

i _4 i 3 i
+ _is <_- _kO- _ _- _ - _ _ _

_3
_-- - h2 I8p 3 _ _

13 12
-_ c°S@o+ h2 _ _- _ >

• 13 _ 14 E 3

+ _c < 2 _- _kO + gSF + _ _- + 2 _ _-

i3 %3 i i 2 _i

+ _ + 2 _ b sin@ O) > --+ h2 (Sp _- 8kO _- _ 2 _.
l

"i i4 %& 13 i2
+ SkO) 80 + 2 + 2 e+ _Is < - 9 _- _kO + _ -4- (Bp -_- -_-

i i 3 i2
+ 2 _ _ b _- cos80 - E 2 SkO

13 12 _i

+ h2 V-3- (O0 + _kO ) + h2 9 _- (-2% + eO O) > _?.
1

"i 14 %3 13 E 3 _i

+ _Ic < - 2 _-_- (80 + _kO ) + v_- I - _-_ e 28 0 - h2Bp_- 280 > _?.
1

• i4
+ _s < _ _- _kO 200 + Bp gSL h2 _2- _kO

_3 _2 _I

+ h2 ( _ --a--cdO 2 -_ + _ _- I @0 ) > --_.
1

"i 13 i E3 _i

+ _lc < - _-3- b -Y _ _ _- e°Seo > _
1

•i - + H2 1 _2 n I+ _is < - gST Y_ _ _- sinSo > ___
1

"i 13 i 13 12 12 _i )2

+ 81c < _- + _ _ b _- c°S@o + -_ e + h2 8p _- > ( _i

13 i2 el )2
+ _i < --- - h2 1 __ sin8 0 > (Is 3 _kO Y _ 5 2 _?.

I

"i _3 _2 nl )2
+ _is < -_ (8p + 8kO) + h2 --2- > ( _i

i - i3 13

+ 8M < 2 iFi ( _-_- _kO + _-3- 8p@O) >

+ 8kO ) >

_ 13 12

< 2 £Fi (- _)_- - _)_- 2 _) >

i - 13

+ _M < 2 IFi _ _- (_P

i

+ _M

52



i 3 i 2 _I"i
+ BM < 2 iFi ( _ _- + _- _) > (_i)

12 i 3 i 2 _I
"i - (_p 2 _) (OO + +k0) + _) X - _ i 2) > ( _. )+ _M < 2 £Fi -_- -_ -2- P i

i 2 12 n I
"i - (_ _ g i cos@0) > ( )

+ _M < 2 _Fi 2-- - _ _ b T

.,. _2 _2 _i
i i cOS@0) > ( )2

+ _M < 2 IFi ( -2- + _) _ -_ _i

" i 3 _i )2+8 <--- >(
x 3 _k0 _.

l

• i4 i3

+ @ < - _ _- _kO + 2-_ - +x

- _ _-- 21h2 + h2 _-_ 280 - 9 _-% h2 > _--?
i

.. i3 i2 12 _2

+ @y < 3 --2 _ - H2 _- (Sp + 8k0 ) - H2_ p _-

i2 el 2

+ E2 (- -_- (Bp + Bk0) - 2 i E2) - gFi 2 i iFi > ( _i )

• 13 i4

+ 9y < ---3 2Ek0 - 9 4

i2 i2 i3

-_- 2 e + 2 h2 _p _- + h2_-3- (O0 + Ok0)

- 12 _I 2

+ Rxs < - -_ (6p + Bk0) - 2 i h2 > ( _.)l

• i 3 i2 21

+ Rys < - "-_ 290 + _)_-X>_q

_2 i2

+T < - h2 n2,x (iFi) R (--_- (Bp

_I 2

+ Be0 ) -2i h2 ) + q2(gFi) 2i iFi > (_i)

i3 i2 _i
%1 < nl(£Fi ) (_ 9 -3- 2@ 0 + _)___%) > _.

+T

- i2 _i
+ _2 < 2 _ > --

-R- n2 (IFi) IFi -2- _.
l

• i 3 i2 n I

+ E3 < - E 2 n3 (£Fi)(- 9 _- 2@0) - h2 _3 (£Fi) _)_- % > _i ] } i

+ @y < - h3 PzS + hi WU N + h4 WE N + h5 WS >

2 2 : o
- lyy _i y yx _i x

(3.22)

53



Elastic Mode Equations of the Supporting structure

Symmetric Bending in X-Y plane (Horizontal)
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Symmetric Bendihg in X-Z plane (Vertical)
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Articulated Rotors
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Elastic Mode Equations of the Supportin$ Structure

Symmetric Bendin$ in X-Y plane (Horizontal)
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Symmetric Bending in X-Z plane (Vertical)
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In the relatively long set of equations presented in the preceding pages,

Eqs. (3.1) - (3.6) represent the equilibrium position or trim equations, while

Eqs. (3.7) - (3.30) are the linearized stability equations written in the rotor-

plane or multiblade coordinates. The trim equations are the samefor both

articulated and hingeless rotors. _For the case of hingeless rotors, the stability

equations are given by Eqs. (3.7) - (3.25) and for the case of articulated rotors,

the stability equations are given by Eqs. (3.7) - (3.20) and (3.26) - (3.30).

These equations can be used to analyze the aeroelastic and aeromechanical stability

of a twin rotor system, with a buoyant envelope (Fig. 2), in hover.

The stability equations can be written more compactly by using a matrix re-

presentat ion
,0

[M] {q} + [C] {q} + [K] {q} = 0 (3.31)

where [M], [C], [K] are constant coefficient matrices in which the elements

are dependent on the equilibrium quantities, and {q} is the generalized coordinate

vector, which can be written as

{q)

ql

q2

For a four bladed rotor, the value of n, in the blade equations, is i. The

corresponding generalized coordinates are
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It can be seen from the equations associated with alternating modes, Eq. (3.8),

(3.12) and (3.16), that these equations are decoupled from other degrees of freedom.

Similarly, the equations corresponding to the other degrees of freedom do not depend

on the alternating modes. Hence, Eqs. (3.8), (3.12) and (3.16) can be solved inde-

pendently, thereby reducing the size of the matrices [M], [C] and [K]. Based on this

property of the alternating modes, Eq. (3.31) can be split into three groups of

equations, namely:
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[MI ]

p .. "_

q2

+ [cz]

[M2] {q5 } + [C2]

[M3] {q6 } + [C3] {q6 } +

i

{_5 } +

+ [K I]

q2

q3

q4

= 0 (3.32)

[K2] {q5 } : 0 (3.33)

[K3] {q6 } : 0 (3.34)

The order of the various matrices is given below

[MI] , [Cl] , [KI] 25 x 25

[M2] , [C2] , [K2] 3 x 3

[M3] , [C3] , [K3] 3 x 3

After obtaining the equilibrium state, the three groups of Equations (3.32) -

(3.34) can be solved separately for the stability analysis. The information about

system stability is obtained from an eigenanalysis of Equations (3.32) - (3.34).

The various results obtained together _ith the physical interpretation of these

results are presented in the next chapter.

3.2 Equations for S in$1e Coupled Rotor/Body Model

It is evident from the preceding discussion that the mathematical model of a

multiple rotor system, coupled with a supporting structure, is algebraically compli-

cated. To develop confidence in this model it seemed prudent to use it first for

simulating the behavior of a single rotor system coupled with a fuselage. For a

coupled rotor/body system, in ground resonance, including the effect of the aero-

dynamic loads, high quality experimental data has been published by Bousman in Ref. 6.

A comparison of the results obtained from the analytical model developed in this report,

with experimental data [Ref. 6] is a reasonable approach for validating the equations.

In this section, the equations of motion for the multirotor model, derived in the
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previous sections are modified to study the aeromechanical stability of a single

rotor/body model of a helicopter in ground resonance. The modifications intro-

duced consist of deleting a numberof degrees of freedom so as to simulate the

particular configuration tested by Bousman[Ref. 6]. A brief description of this

test is provided below.

Bousman[Ref. 6] has obtained excellent experimental data for the aeromech-

anical stability of a hingeless rotor on a special gimbaled support, simulating

body pitch and roll degrees of freedom. The rotor consisted of three blades and

five different configurations were tested. The different configurations re-

present different blade parameters characterized by the nonrotating natural fre-

quencies of the blade in flap and lag, pitch-lag coupling and flap-lag coupling.

The rotor was designed such that most of the blade flexibility was concentrated

at the root by building in root flexures. The rotor assembly was supported on

gimbal which had pitch and roll degrees of freedom. In this report, the analyti-

cal results obtained are comparedwith the experimental results, presented by

Bousman,for rotor configuration I, where the designation of this configuration

is consistent with that in Bousman'spaper [Ref. 6]. Configuration 1 had dif-

ferent stiffnesses in flap and lag respectively, the corresponding non-rotating

flap frequency was 3.13 Hz and that for lead-lag was 6.70 Hz. The airfoil

cross-section of the blade was camberedand has a zero lift angle of attack

equal to -1.5 degrees. A substantial part of the experimental data was

obtained for zero pitch setting, however, due to the presence of camber the rotor

produces a small amount of thrust at this pitch setting. The rotor blades were

rigid outboard of the flap and lag flexures which were located at a radial station

0.105R. There was no flap-pitch or pitch-lag couplings for this configuration.

Furthermore, the blade was very stiff in torsion. In the case of the experiments
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conducted for pitch angles other than zero, the experimental set up was so de-

signed as to introduce the changes in pitch angle outboard of the flexures and

hence there wasno flap-lag structural coupling for these cases. The structural

damping in body roll was very small in comparison with that for body pitch. The

body pitch and roll frequencies were controlled by cantilever springs on which

the gimbal wasmounted. It was stated in Ref. 6 that the body pitch spring was

selected to provide a dimensionless body pitch frequency of about 0.12 at a nominal

rotor speed of 720 R.P.M. and the roll spring was selected to give a dimensionless

roll frequency of about 0.28. (The frequencies are nondimensionalized by dividing

by rotor speed.) As indicated in a letter by Bousmanto the authors the design

objectives for the model were dimensional frequencies of 1.44 Hz in pitch and

3.36 Hz in roll. However the actual measured frequencies were 2 Hz in pitch and

4 Hz in roll. From the experimental results presented in Ref. 6 it is evident

that over a wide range of _(200~i000 R.M.) the pitch and roll frequencies are very

close to 2 Hz and 4 Hz respectively. Hence, for the present study, the pitch

and roll frequencies are chosen to be 2 Hz and 4 Hz. With this combination of

frequencies, at a rotor speed of 750 R.P.M., the lead-lag regressing modefre-

quency coalesces with the body roll frequency causing an aeromechanical in-

stability.

The degrees of freedom required to study this aeromechanical stability prob-

lem are: the fundamental flap and lag modesfor each blade and the pitch and roll

degrees of freedom of the body. In this class of problems, it has been established

that the collective flap and lag modesdo not couple with the body motion and

thus, these modesare not considered. Therefore, the numberof degrees of freedom

for the aeromechanical problem are six. These consist of: cyclic flap (Blc, _is),

cyclic lead-lag (_ic' _Is ) ' body pitch (0) and body roll (_). The relevant equili-

brium and stability equations, for this problem are given in the following sections.
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3.2.1 Static Equilibrium Equations

Flap:

-2 -2 E3 i2
80 {_ + (eL - _F ) sin2e + + e}c T T

-2 -2 14

+ _0 {(6oL - _F ) sinec cOSec + _ T 8p}

Lead-La$

E 3 12 E4 i3 _2
+ 8p { T + T _ } - _{T 80 + T (-X+2e°o) ---_-el} = 0

(3.35)

where

-2 -2
B0 { - (eL -eF) sinec cOSec _

-2 -2
+ _0 {- _2 + (eL _ eF ) sin28c

_2 _ 14 [3

2 e + _( -TBpe0 3 2lSp)}

_3

+ _o_o {_7 x}

c __ _4 _'3 r3 _-2

x. x, x, x, eO0)+ _{- aUV ( T + 2--_-- e) - --3 lO0 + T I (l- } = 0 (3.36)

K
-2 8

e F = m_2R 3

K
-2

eL = m_2R 3

PAabR
v= ; _=e -m _ ; l= l-e

When there is no structural flap-lag coupling, the terms containing sine
C
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and cos must be deleted from the above equations as well as in the
c

stability equations given below•

0 0 = 0 -c OZL

where 0 0 is the effective angle of attack

0 is the collective pitch setting of the blade
c

eZL is the zero lift angle of attack

3.2.2 Stability Equations

n-cosine Flap

Bnc Fnc(1) + _ns Fnc(2) + _nc Fnc(3) + _ns Fnc (4)

+ _nc Fnc (5) + _ns _nc nc nc ncFnc(6) + F (7) + _ F (8)

where

+0 F (9) +0
nc

F (i0) + _ F (ii) = 0
nc nc

L2 -2Fnc(1) = _2F + (_ - _F ) sin2Oc

E4 E3 E2 _3

+_-4- _0 + _- + _- g - 2n _-

_3
2 1 _ cos00-n _ 5

E4 13
Fnc(2) = n( _T + _-3- e + gSF )

-2 -2 E4

_ + B0)Fnc(3) = (e L _F ) sin0 c cos0 c +_- (Bp

i 3 i 4 i 3

Fnc(4) = n( 2 _- (80 + _p) - 2_-_- O 0 + _- %)

14 13

Fnc (5) = _ -_ + _ -3- e + gSF

(3.37)
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i3 i i3

Fnc(6) = n{ 2-_ + 2 _ _ _- b c°s00 }

i3 i4 i3

Fnc(7) = 2 -_ (60 + Bp) - 2_- O0 + _ _- X

13
13 I __ cosO 0

Fnc(8) = -_ + _ 9 b 3

i3

Fnc(9) = - -_ an

_4

F (lO) -- _n- _q-
iic

E3 i3

Fnc(ll ) = 6n{ 2 _ + h2 (2_-_

where 6 = i when n = i
n

= 0 n _ i

gSF
m

gSF - m_R 3

n-Sine Fla_

-- Bns Fns(1) + Bnc Fns(2) + _ns Fns(3) + _nc Fns(4)

• Fns(6 )+ 8n s Fns(5 ) + Bnc + _ns Fns(7) + Bns Fns(8)

+ _ Fns(9) + _ Fns(lO ) + G Fns(ll) = 0

LB.38)

where

-2 -2
- _F ) sin 2@

Fns(1) = _ + (_L c

_4 i3 i2
+_-£ _0 +--f +Y

_3 2
I _ _ _ n cosO 0

3

77



E4 E3

m (2) = n { -'J 4 _o-_- e - }ns -- - - gSF

E4Fns(3) = (_ - ) sin8 cos8 + V-_- (80 + 8 )
c c p

[3 E4 E3

Fns(4) = n { - 2 -_- (80 + 8p) + 2_-_-- O0 - 9-_- _ }

E4 E 3
F (5) = 9 + 9 _ + -
ns -4- -3- gSF

i 3
i3 i _-3- _ cos8 0 }Fns(6) = n { - 2 -_- - 2

_3 i4 i3

Fns(7) = 2 -_- (80 + 8p) - 2 _- 80 + _-_- _

i 3 i i3

Fns(8) = --3 + 2 _ _ -3- c°S@o

_3
"F (9) = (S --
ns n 3

_4

Fns(lO) = _ _--n 4

i3 i3 i2

Fns(ll) = 6n { 2 -_- + 29-_- @0 h2 - h29-2- _}

n - Cosine lead-lag

Lnc(1) + L 2) + 8 L (3) + B L (4)_nc _ns nc ( nc nc ns nc

+ _nc _ns nc nc ns ncenc(5) + L (6) + 8 Lnc(7) + 8 L (8)

+ _nc Lnc(9) + 8nc Lnc(lO) + _ Lnc(ll) + @ Lnc(12) + Lnc(13) = 0

(.3.39)
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where

Lnc(1) _ _2 + (_2 _ -2= _F ) sin2@ c

_2 _ 2 i 3 i4

- _-- e + n _- -9-_ 8pe 0

Cd0
L (2) = -n { 2
nc a

E4 E3

4 + v-_ SO _" + gse }

L (3) = - (_2- _2) sin@ cos@nc c c

2 1 13

- n _9 b-_- sine 0

i 3

Lnc(4) = n { 2 -_-

E4 i3

(80 + 8p) - 9-_- O0 - _-_- (- 2% + e O0) }

Cd 0 i4

Lnc(5) = - 2 9 a 4

_3

_Y 80 % - gSL

i3

Lnc(6) = - n 2 _-

i 3

Lnc(7) = 2-_ (80 + 8p) -

i4 13

_- 80 - _--_- (- 2% + e80)

I E 3

Lnc(8) = 2n _ _ b _- sin@ 0

i 3

Lnc(9) = _ _-

=3
i

Lnc(10) = _b T sin@ 0

i 3 E2

Lnc(ll) = 6n { _- (Sp + 80) + h2 -2 }

i 2

Lnc(12) = 6n h2 --2 _0

E4 E3

Lnc(13) ='6n { V-4- 80 3 2_ }

where gSL = gSL/n_QR3
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n-Sine lead-lag

_ns Lns(1) + _nc Lns(2) + Bns Lns(3) + 8nc Lns(4)

where

L (7) + B L (8)+ _ns Lns(5) + _nc Lns(6) + Bns ns nc ns

,e oo ))

+ _ns Lns(9) + Bns Lns(10) + O Lns(ll) + _ Lns(12 ) + Lns(13) = 0

(3.40)

i2 2 13 i4

-2 _2 _ _) sin2e _ -- e + n 9_- 8p80Lns(1) = - eL + ( L c 2 -3- -

L (2) = n{ 2_ cd0 14 13
ns a 4 + v_-IO0 + gSL }

L (3) -2 -2
ns = - (eL - _F ) sine cos0 - nc c

2 1 E3

y _ b _- sin@ 0

i3 i4 i 3

Lns(4) = n { - 2 _-- (80 + 8p) + v T 80 + _-_ (- 21+ e80)}

cdO i4 i3

Lns(5) = - 2_ a 4 _T I 80 - gSL

i3

Lns(6) = 2 n _-

i 3
L (7) = 2 (8
ns -3- p

i4 i3

+ S0) - v-Z e0 - _ T (- 21+ eeu)

i i3
Lns(8) = - 2 n _ _ b _- sin@ 0

E3
L (9) =
ns 3

L (i0) i 13
ns = 2 _ _ -_ sinS0

i 3

Lns(ll) = 6n { T

_2

+ 80 ) + h2 }(8p _--
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_2
_. --- _o

Lns(12 ) = - 6

_4 i3

Lns(X3) = 6n { -'_'X- O0 + "_"

2x,: }

_3 _e

1,3 - + ,_---g- +2'o-5"
cdO + "o-_- )'00 + gSF

_2R3 { BIc < _--_- 4

2 _3 I _ ._.- s£nO0 ) >

+ _2 ('°__$(_p +B°) +_-3- °°r'°+ E v 2

-_- cosO 0
# + ,oI-_--(Bp + 3%) Oo + _ '_

+ Ba_.s < - 2,o--f- _0
i'2 C - 3), + _ °o))>

_3 _2 _ ._2 ,_---
+_2 (2 "5-°o- T _p B° + 2

13
i4 oo+_2 ,o-_--Oo ('-Bp +%)>

+ _lc < - 'J'-g"

# zoo - _'-6-(_p + %) + _p _SL
+ r.ls <_-_- _0

i'3 _2
Cdo ___ - _-_" ),00)>

- _2 ("_2 % _ 2 _-'T" 3 _3+ 2 £,o_ _ c°sO0

+ 131c < - '0--_-" _0 + x)'-_ (BO+ BP) 00+ 2 g-_3 + 2 _-'_'2 _ 2

e
- _'2 (i2B° - ,o Oo _ .o--f-( - 2),+ _-00)) >

. 13 _ _ _ -2_

+ BI s < - 2 -_ _0- gsF

_2

_3 _. _ sin Oo) >

-_2 ('°-S" (Bp+_'o) + 2 _ _ T
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2

_'0"

0

200 >

2
2

I-" (,B_÷ 3Bo)_o-_

coSO 0
3

B2



E3 i2 _ E2 E2
- h2 (v'TZ°o- T l_p 60+ '_T (- 3 x +_00)) >

+ 81s <_ cdO _4 E3 - E4 E3 _--a- _- + _-3-- X@O + gSF + _ + 2 _- e

_3 _3 i3 1 i 2

+,h2 (6p vT + B0 u_- + vT {000 + Y _ B Tsin°o)

14 _4
_ - + 6o)+ _ic < - V_- _0 200 8p gSL + 9_- (6p

+ h2 (lz ¢0 - 2
Cd 0 E3 E2

a 3 9 T X O0) >

E4 13

+ _is < - _ _- Bo + h2 V _- ( - Bp + 60) 00 >

• _3 _ E4 _3

+ Blc < 2 -_ _0 + gSF + 9_- + 2 v_-

E3

% h2 (v T (Sp
z 12

+ BO ) + 2 _ _ 5 _- sine O)

• _4 _4

+ 61s < - v T _0 + v _- 00 ( 8p

E3
E3 E2 i B cos00

+ 60) + 2 -_ + 2 T e + 2 2v T

E 3 E2

- h2 (12 60 - v-T 00 - 9T (- 2 I + _Oo_ >

• E4 i3 E3 [3
- _ _) _- 200 >+ _'lc < - 2 _,-4- eo + v_--x - v _--e 2e0 h2 8p

_ E3 E2
• 14 - cdO 2 _-+ h2 _T

+ _Is < _-_ _0 200 + 8p gSL - h2 12 _0 + h2_T
X0 0 >

•. E3 z 13
+ 6lc < T + _v b -_- cosO0 +

l2 12

_- e + h 2 Bp _->

•. l 3 1

+ 6].s < - T r'o- B2E '_ B
_,2

T sin O0 >

.. 13 E 2

+ {is < T (80 + 6p) + h2 _ >
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•. 13

+ _ <--_- _0 >

• i4 13 i2
+ _ <-v-_- _0 +2]-+T 2 e+2i2 Bp

12 i 3

T + f2v_ °o

i2 i3 i2

- v T 2Xi 2 + i2 v _- 200 - i 2 _T X >

•. i3
+ @ <

3

i2 i2 i2
T _ - i2 _- (_p + BO) - i2 Bp T

i 2

+ i2 ( --i- (Bp + BO) - 2 _,h 2) >

- I _2 @ + I _2 = 0 (3.42)
yy yx

For a three bladed rotor, the value of n, in the above equations is I.

The inflow ratio, %, used in the calculation of the aerodynamic loads is

taken from [Ref 3]

;_ = i6- - 1+ 1+ _a sgn @0

In the last equation @0 is the effective angle of attack of the blade.

As indicated in Ref. 6, a cambered airfoil was used in the model rotor

tested, thus

where @
C

(3.43)

@0 = Oc - @ZL (3.44)

is the collective pitch setting of the blade and 0ZL is the zero lift

angle of attack. The static equilibrium equations, Eqs. (3.35) and (3.36), are

used to evaluate the blade equilibriumpositionsand Eqs. (3.37)-(3.42) are solved tc
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determine the aeromecbmnical stability of a single rotor helicopter, in ground

resonance.

The procedure followed in this analysis is slightly different from the

procedure used to analyze the stability of a vehicle in hover, presented in

Chapter 2. During hovering flight, the vehicle equilibrium conditions have to be

satisfied. Whereas for ground resonance problems, the equilibrium condition of

the vehicle do not have to be satisfied. Hence, the collective pitch angle of

the blade, ec, is not an independent variable to be evaluated from the

equilibrium conditions of the vehicle, and it becomes a prescribed quantity.

The procedure for the analysis of ground resonance problem is as follows. For

a given value of the collective pitch setting of the rotor, under the prescribed

conditions of operation, the equilibrium deflections of the blade have to be

evaluated from the equilibrium equations of the blade, Eqs. (3.35)-(3.36).

Then, these quantities are substituted in the linearized stability equations,

Eqs. (3.37) - (3.42), to analyze the stability of the vehicle.

The results of this analysis together with the results obtained for the

stability of the complete HHLA model are presented in the next chapter.
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4. RESULTS

Based on the equations presented in the previous chapter, two types of

problems were solved. First, the aeromechanical stability of a single rotor

helicopter, in ground resonance, is analyzed and the analytical results are

compared with the experimental results available in the literature [Ref. 6].

Next a detailed stability analysis of a multirotor vehicle, representing an

HHLA (Fig. 2), in hover, was carried out. The results are presented in two

separate sections.

4.1 Results for the Ground Resonance Problem and Comparison with Experimental

Data

In this analysis, aimed at predicting the aeromechanical stability of

a single rotor helicopter, the behavior of the model was studied at various

values of the rotor speed _. The results of this aeromechanical problem are

presented in Figs. 4-8 together with the experimental results. Also presented

in these figures are the results obtained by Johnson [Ref. 7]. The aerodynamic

model used by Johnson was based on a dynamic inflow model, whereas a quasisteady

aerodynamic model is used in this report. The data used for this analysis is

presented in Appendix C.

The variation modal frequencies with _ are presented in Fig. 4, together

with the experimental data obtained in Ref. 6. The progressing flap (Bp) and

the progressing lead-lag (_p) frequencies increase very rapidly with _. The

lead-lag regressing mode (_R) frequency evaluated from our analytical model is

in excellent agreement with the experimental results. The body pitch (8) and

roll (_) frequencies have slightly higher values than the experimental results.

The damping in'pitch as a function of _ is shown in Fig. 5. The analytical

results are in good agreement with the experimental data. The variation of

damping in roll as a function of _ is shown in Fig. 6. It is evident that for

this case the analytical results yield values which are somewhat higher than

the experimental data. The differences observed between our analytical results
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and the experimental points, for the frequency and damping in body modes, could

be explained as follows. In our calculations, the numerical values used for

the stiffness and structural damping in body pitch and roll modes are evaluated

based on pitch frequency equal to 2 Hz and roll frequency equal to 4 Hz.

Fig. 7 presents the variation of damping in lead-lag regressing mode with

_. The results of the present analysis show slightly better agreement than the

results obtained in Ref. 7 with inflow dynamics. It is also important to note

that in the region, beyond 800 R.P.M., our results are in excellent agreement

with the experimental results, while the theory with inflow dynamics predicts

higher values.

Changes in damping of the lead-lag regressing mode as a function of the

collective pitch setting of the blade are presented in Fig. 8. At _ = 650 R.P.M.,

the results shown in Fig. 8a indicate that the theoretical analysis used by

Bousman [Ref. 6] predicts a much lower value for the damping than the experimental

results. The present analysis shows considerably better agreement. At _ = 900

R.P.M., the experimental results indicate a lead-lag regressing mode which is

always stable, but the theoretical results shown by Bousman [Ref. 6] imply an

instability which becomes stronger beyond a collective pitch setting of 2 degrees.

As evident from Fig. 7b, the results of our analysis predict the correct trend

and the predicted damping levels are much closer to the experimental results. An

item to be noted in these figures (8a, 8b) is that the curve representing our

analytical results starts from an angle e = - 1.5 degrees. Although Fig. 8e

contains an experimental data point corresponding to e -- - 3 degrees, we havec

not computed the results for this pitch setting.
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The above comparison showsgood agreement between our analytical results

and the experimental results for the aeromechanical stability o_ a helicopter in

ground resonance. Therefore, it can be concluded that our analytical model for

the dynamics of the coupled rotor/vehicle system and the method of solution for

the stability analysis are valid.

Finally it should be noted that more comprehensive results comparing the

experimental data [Ref. 6] with the results from the mathematical model

developed in this report, using a quasisteady aerodynamic model, can be found

in Ref. 8. Additional results showing the sensitivity of the results to un-

steady aerodynamic effects was presented in Ref. 9.

4.2 Results for Multirotor Model of an HHLA

Based on the equations presented in Chapter 3, two computer programs were

developed to analyze the trim and stability of the twin rotor vehicle with a

buoyant envelope shown in Fig. 2. The results are presented in three main sections.

The first section gives the data and certain preliminary calculations for various

frequencies. The second section presents the results of a parametric study in

which certain relevant physical parameters of the system are varied so as to

determine their effect on the stability of the vehicle. This parameter variation

was also utilized for identifying the physical meaning of the various eigenvalues

obtained in the analysis. The last section presents the physical interpretations

of the results. These calculations were done on a vehicle without a sling load.

4.2.1 Data for the Multirotor Model

The data used'for the calculation of equilibrium or trim state and stability

of the vehicle are given on the next two pages.
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Blade data

The HHLA model (Fig. 2) has identical rotors.

Type of rotor: Articulated rotor

Number of blades N 4

Blade chord c -- 2b 41.654 cm (1.3666 ft.)

Hinge offset e 30.48 cm (1 ft.)

Rotor radius R 8.6868 m (28.5 ft.)

Blade precone Bp 0

Distance between elastic center and aerodynamic center XA 0

Distance between elastic center and mass center X I 0

Mass/unit length of the blade m 7.9529 kg/m (0.1661 slug/ft)

Principal mass moment of inertia of the blade/unit length

IMB3

IMB2

Aerodynamic data

Blade airfoil

Lift curve slope a

Density of air PA

Blade profile drag coefficient cdO

Rotor R.P.M.

Solidity ratio

Lock number y

1.1503 x i0 -I kg.m

6.6723 x 10-3 kg.m

(2.586 x 10-2 slug ft)

(1.5 x 10-3 slug ft)

NACA 0012

2_

1.2256 kg/m 3 (0.2378 x 10-2 slug/ft 3)

0.01

217.79 R.P.M.

0.0622

10.9

Nonrotatin$ blade fre_uencyparameters (Articulated blade)

KBB )½

,Flap frequency parameter _F = (_
0

Lead-lag frequency parameter
0
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Torsional frequency parameter

(articulated)

Torsional frequency parameter

(hingeless)

Damping in flap

Damping in lead-lag

Damping in torsion

Vehicle data

Weight of fuselage F I

Weight of fuselage F 2

Weight of underslung load

Weight of envelope

Weight of supporting structure

Weight of passenger compartment

_TI : ( K-i- )½
mR 3

_r2 = ( K-j!- )½
mR 3

gSF

gSL

gST

WFI

WF2

WUN

WEN

W S

W S '

(Treated as a lumped structural load

attached at the point O on the structure (Fig. 2)
s

Buoyancy on the envelope

(Assumed)

0

1.895 rad/sec

0

0

0

3.5919 x I04N(8075 ib)

3.5919 x I04N(8075 Ib)

6.6723 x 104N(l.5xlO41b)

8.5539 x 104N(l.923xi041b_

9.4302 x I03N(2120 ib)

6.6723 x I03N(1500 ib)

1.3748 x I05N(30907 ib)

Geometric data

Distance between origin 0 and F Is _FI

Distance between origin 0 and F 2s _F2

Distance between origin 0 and
S

underslung load (Assumed) h I

Distance between centerline and

rotor hub h 2

Distance between centerline and

center of volume of envelope h 3

-21.946m (-72 ft)

21.946m (72 ft)

-15.24m (-50 ft)

2.591m (8.5 ft)

14.64m (48.03 ft)
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Distance between center line and

C.G. of the envelope h 4 8.544m (28.03 ft)

Structural Dynamic Properties of the Supporting Structure

The supporting structure is modelled as an elastic structure with three normal

modes of vibration: two normal modes for bending in vertical and in horizontal

plane and one mode for torsion. The two bending modes are symmetric modes and

the torsion is an anti-symmetric mode. It was assumed that the envelope and

the underslung load are attached to the supporting structure at the origin 0 .
s

The data given above shows that the vehicle is symmetric about Y-Z plane. Further-

more due to the presence of a heavy mass attached at the center (0s) of the support-

ing structure, the mode shapes in bending and torsion for each half of the model

are assumed to be the modes of a cantilever with a tip mass.

Modal Displacement at FI, F 2 and 0 s

The symmetric mode shape in bending for each half of the supporting structure

can be written as [Ref. ll, Page 140]

X X)2 X 3
n I (_) = 6 ( _ - 4 (_)

and

X 4
+(_)

X X)2 X 3 X 4
n 2 (_) = 6 (_ -4 (_) + (_)

(Bending in X-Y plane) (4.1a)

(Bending in X-Z plane) (4.1b)

where X is the coordinate of any section of the supporting structure from origin

0 and L "_ the length of the supporting st_u_e,+"_ L = 21.946m (72 _)_+.
s

Bending in X,Y plane

The modal displacement at any location on the supporting structure during the

symmetric bending in X-Y plane can be obtained from Eq. (4.1a). The modal dis-

placement

at location F I nl(gFl) 3.0

at location F 2 NI(gF2) 3.0
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at origin 0 nl(0 s) 0s

The slope due to the modal displacement, at any section, can be obtained by

X
differentiating Eq. (4.1)with respect to (_). The slopes due to the modal dis-

placement

1 d(dnl I= X -0. 1823
at location F I : nl,x(_Fl ) L _ ) gFl

= 1 d(dnlx ) I 0.1823at location F2 : _l,x(_F2 ) L _F2

1 dnl

at location 0 : ql (0s) = X I 0

s ,x L d( _ ) I 0s

Bendin$ in X-Z plane

The modal displacement and slopes due to the modal displacement at any

location on the supporting structure, during symmetric bending in X-Z plane can

be obtained from Eq. (4.1b).

The modal displacement

at location F 1 : n2(%Fl ) 3.0

at location F 2 : N2(%F2) 3.0

at location 0s : n2(0s) 0

The slopes due to modal displacement

at location F1 : N2,x(gFl ) = I dN2X I

L d( _ ) _FI

1 dN2 I

X I
at location F2 : n2,x(_F2) LL d( _ ) _F2

I dN2

at location 0 : n2,x(0s) = X 0
s L d(_-) 0s

-0.1823

0.1823
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Torsion

The mode shape for torsion, for each half of the supporting structure is

[Ref.10, Page 99]

X _ X

D3 ( _ ) = sin _ ( _ ) (4.2)

The modal displacement due to torsion

at location F 1 :

at location F 2 :

at location 0 :
S

Generalized mass and stiffness data

n3 (IFl) -I .0

n 3 (iF2) i. 0

n3(0 s) 0

Generalized mass ( M ) and generalized stiffness ( K ) for the i th mode of

vibration of the supporting structure is defined as

and

%F2 2
M = m H i dx

J£FI

2
K = e. M

l

where _. is the i th

n. is the i th
1

modal frequency

mode shape

and m is the mass/unit length (for bending modes), or m is the mass moment

of inertia/unit length (for torsion modes)

Bending in X-Y plane (horizontal)

generalized mass MSBXY

generalized stiffness KSBXY

Bending in X-Z plane (vertical)

generalized mass MSBXZ

generalized stiffness K
SBXZ

6.801 x 104 kg (4.66 x 103 slug)

7.96 x 107 kg/sec2(5.454x106slug/sec 2)

6.801 x 104 kg (4.66 x 103 slug)

7.96xi 07kg/sec 2 (5.4 54xi 06 slug/sec 2)
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Torsion

generalized mass MST

generalized stiffness K ST

Rotary inertia data for the vehicle

1.936 x 104 kg.m2(l.428x104slug ft 2)

7.202x106kg.m2/sec2(5.312x106slug

ft2/sec 2)

The rotary inertia tensor of the various masses of the system are added

together to obtain the rotary inertia of the complete vehicle about X-Y-Z axes.

The inertia tensor is an assumed quantity

IXX = 6.44 x 105 kg.m 2 (4.75 x 105 slug.ft 2)

Iyy = 2.59 x 106 kg.m 2 (1.91 x 106 slug.ft 2)

Iyx = Ixy = 0

To facilitate distinction between data which was available and data which

had to be assumed, the list of assumed data is provided below:

(i) Torsional frequency of the blade

(2) Principal moments of inertia of the blade

(3) The mode shapes of the supporting structure and hence the generalized masses

and stiffnesses

(4) Inertia tensor of the vehicle

4.2.2 Preliminary Calculations

In the preliminary calculations, the frequencies of various modes are cal-

culated using elementary structural dynamics. These calculated frequencies are

useful in identifying the various eigenvalues obtained in the stability analysis.

Supportin$ structure frequencies

Bendin$: If the supporting structure is considered to be a free-free beam (Fig. 9a)

with uniform properties, the first elastic mode frequency in bending is [Ref. i0,

page 80].
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= ( 1.51_ 2 E1T) (m)½

where L is the length of the beam

E1 is the stiffness of the beam

m is the mass/unit length of the beam

In the present analysis

m = 21.908 kg/m (0.4576 slug/ft)

E1 = 1.471 x 1010 N.m 2 (3.56 x i0 I0 ib ft2)

L = 43.891 m (144 ft)

thus

1 517 2 1"471xi010 )½ 302.7 rad/sec
= ( 43.891 ) ( 21.908 --

For the case of the vehicle being considered, a heavy mass is attached at

the center of the beam. This heavy mass is due to the envelope and underslung

weight. Therefore, the model for the supporting structure becomes a beam with a

heavy mass in the center (Fig. 9b). It is shown in Ref.10 that if the ratio between

the mass fixed at the center of the beam to the mass of the beam is greater than

3, then frequency of the beam in the symmetric modes becomes close to the natural

frequency of a cantilever beamwith length equal to half the length of the free-free

beam. In the present case, even with the envelope mass alone, the ratio is

8. 5539xi04
= 9.07. Hence the first symmetric mode for one half of the structure

9.4302x103

can be assumed to be the fundamental mode of a cantilever. The natural frequency

of a cantilever in fundamental mode is [Ref.10, page 77]

c = ( 0.5977L )2 ( __E1)½

where L = 21.946_ (72 ft)

Therefore, the natural frequency is e = 189.27 rad/sec
c (4.3}

In addition to the heavy mass attached to the center, there are also two masses,

representing the helicopter, attached at the two ends of the beam. Thus an
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equivalent approximate model would consist of two cantilevers with tip mass

(Fig. 9c). The natural frequency for this approximate model is calculated using

Rayleigh's quotient. Since the model is symmetric about the center, only one half

should be considered for the frequency evaluation in fundamental mode.

The fundamental modeshape for a cantilever is [Ref. 9, page 140]

X X )2 X 3 X )4n ( _ ) = 6 ( _ - 4 ( _ ) + ( _ (4.4)

The generalized mass for the fundamental mode is

f0 L 2 WF 1 2
M = mdx_ + --

g

WF1
= 2.311 mL + 9 --

g

L

(E)

where m is the mass/unit length of the beam

L is the length of the cantilever

WFI is the weight of the tip mass

The corresponding generalized stiffness in fundamental mode is

K = 2.311 2 mL
c

where _ is the fundamental frequency of the cantilever without tip mass, which
c

in the present case 189.27 rad/sec (Eq. 4,3), Thus the fundamental frequency

of a cantilever with tip mass is

2.311 mL + 9 g J

½

where

m = 21.908 kg/m

L = 21.946 m

mc = 189.27 rad/sec

4

WFI = 3.5919 x I0 N
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Therefore _B--0"180 _c = 34.18 rad/sec (4.6)

This is the bending frequency of the supporting structure in both X-Y and X-Z

planes in fundamental symmetric mode. The modeshape is given in Eq. 4.4 for

one half of the structure.

Torsion :

If the supporting structure is considered as a uniform beam (Fig. 10a)

then the fundamental torsional frequency of the beam is given by [Ref. 11, page

193]

_--_(

where L is the length of the beam

GJ is the torsional rigidity of the beam

I is the moment of inertia/unit length about center of twist

In the present case

L = 43.891 m (144 ft)

GJ = 6.4054 x 107 N m 2 (1.55 x 108 ib ft 2)

I -- 140.972 kg m (31.706 slug ft)

• 6.4054 _ ]07

So _ = 43.891 _ _9-_-- )" = 48.25 rad/sec (4.7)

Because of a large mass attached at the center of the beam (due to envelope and

underslung load), the model in Fig. 10a can be modified as shown in Fig. 10b.

In this model, the beam is assumed to be clamped at the center. The natural

frequency for the fundamental mode in torsion is [Ref. !0, page 99]

_ )½_= 2-_ (

In this case L -- 21.946 m (length of the cantilever beam)
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6.4054 x 107 )½ = 48.25 rad/sec (4.8)
Thus _ = 2 x 21.946 ( 140.972

Actually, this value is the same as that obtained in Eq. (4.7) because the tor-

sional frequency of a beam with length % with one end fixed and the other end

free is the same as that of a beam with length 2_ with both ends free, this is

due to the fact that when vibrating in its fundamental mode the center of the

free-free beam is a nodal point.

In the vehicle model shown in Fig. 2, there are two helicopters attached

to the end of the supporting structure. They can be idealized to two tip masses

having rotary inertia which are attached to the beam (Fig. 10c). Due to sym-

metry only one half of the model has to be considered when evaluating the

natural frequency. Assuming the mode shape to be [Ref.10., page 99]

X
= sin _ ( _ ) (4.9)

X

n(_)

the generalized mass is

M
fL X L

In 2 ( _ ) dx + IH n2 ( _ )
J0

= IL/2 + IFI

where IF1 is the inertia of the helicopter attached at the end of the beam. The

generalized stiffness is

IL 2

K -- _- _NT

where _NT is the natural frequency in fundamental mode without tip mass. In

the present case, _NT -- 48.25 rad/sec, and thus the fundamental frequency of the

beam in torsion including the effect of tip mass is

-- + IF1 ]
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where I = 140.972 Kg m

IFI = 8.135 x 103 Kg m 2 (6000 slug ft 2)

L = 21.946 m

and _NT

_T =

(I + 2 x 8.135 x 103 )½
140.972 x 21,946

= .3997 _NT = 19.29 rad/sec (4.10)

The fundamental mode shape and the corresponding natural frequency in torsion

are given by Eq. (4.9) and (4.10).

Assumption resardin$ the torsional frequency of the blade

The following calculation shows why the nonrotating torsional frequency

parameter of the blade is assumed to be _T2 = 1.895 rad/sec.

Torsional frequency of a blade with root spring K_ is

m_ =
l_qR

where IMB 3 is the mass moment of inertia/unit length of the blade. Assuming

_ = 6_ where _ is the angular speed in R.P.M.

K_ = 36 _2 IMB3 R

Using the values

and

IMB 3 = 1.1503 x I0 -I Kg m

R = 8.6868 m

_T2 becomes
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where m = 7.9529 Kg/m

= 22.807 rad/sec

36_2 IMB3R )½

= ( mR 3

Thus

_T2 = (
36 x 22.807 x .11503 x 8.6868 )

7.9529 x 8. 68683

= 1.895 rad/sec

This value of _T2 provides a torsional frequency 6_ for the blade.

Roll Frequency of the Vehicle

The roll frequency of the vehicle is evaluated based on the simple model

(Fig. ii) where the force due to buoyancy is assumed to act above the C.G.. From

Fig. ii, the equation of roll motion can be written as

Thus

Using the values

Ixx ex + (P_ h3 - WEN h 4) 0 = 0 (4.11)

eroll = (

S h3 h4
PZ - WEN )½

I
xx

S 1 3748 x 105 N
PZ = "

WEN = 8.5539 x 104 N

h3 = 14.640 m

h4 = 8.544 m

I = 6.44 x 105 Kg m 2
xx

1.3748 x 105 x 14.640 - 8.5539 x 104 x 8.544 )½
_roll = (

6.4401 x 105

= 1.4108 rad/sec

(4.12)
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Pitch Frequency of the Vehicle

The pitch frequency of the vehicle, is evaluated using the same assumption

used in determining the roll frequency, thus

= ( P_h3 - WENh 4 )_
60pitch I

YY

where I = 2.59 x 10 6 Kg m2
YY

and 60 = 0.7036 rad/sec (4.13)
pitch

4.2.3 Summary of the Various Frequencies

For the sake of convenience, the various frequencies, needed during the analysis

of the vehicle, are summarized below. These frequencies are nondimensionallzed

with respect to rotor speed _, which is equal to _ = 22.807 rad/sec.

Rotor Blade: (In uncoupled modes)

Rotating flap frequency for an articulated blade is

where e = 0.3048 m

R = 8.6868 m

Thus

and

-2
60^ = 1.0545

-2 3 e

60_ = i +2 R-e

g_ = 1.027

Nondimensional rotating lead-lag frequency is

-2 3 e
60 =

2 R-e

Thus

= 0.0545

= 0. 233

(4.14)

(4.15)
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Nondimensional rotating torsional frequency is

-2 K_
= +i

_ IMB3P_2

= 37

Thus

Vehicle:

Rigid body translation
_RX = 0

m

wRy = 0

Rigid body rotation
0.7036

Pitch _
pitch 22.807

- 1.4108
Roll _ro--il - 22.807

Supporting structure flexible modes

= .3085 x I0 -I

= .6185 x i0 -I

(4.16)

(4.17)

(4.18)

Bending in X-Y plane
- _ 34.18

_SBx Y 22.807 = 1.499
(4.19)

Bending in X-Z plane - _ 34.18 = 1.499
_SBx Z 22.807

(4.20)

- 19.29 = 0.846
Torsion _ST - 22.807 (4.21)

4.2.4 Equilibrium (Trim) Results without Sling Loads

An equilibrium analysis for the vehicle in hover is performed using

the data given in the previous sections and assuming that the magnitude of

the underslung load is zero.

Total weight of the vehicle W = WEN + W S + WH + WS_
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= 8.5539 x 104 + 9.4302 x 103 + 2 x 3.5919 x 104 + 6.6723 x 103

= 1.7348 x 105 N (39000 ib)

Buoyancy of the envelope

= 1.3748 x 105 N (30907 Ib)

Weight to be supported by the two rotors

= 0.36 x 105 N (8093 ib)

Thus each rotor has to develop a thrust = 0.18 x 105 N (4046.5 ib)

The various equilibrium values for these conditions are:

Equilibrium flap angle of the blade

lead-lag angle

torsion angle

Collective pitch angle

Inflow ratio

Thrust developed by each rotor

Thrust coefficient

Bk0 = 2.302 degrees

_k0 = -3.963 degrees

_k0 = -0.115 degrees

00 = 4.206 degrees

%= 0.03272

= 0.1797 x 105 N (4040 ib)

CT = 0.00158

1.3748 x 105

Buoyancy ratio BR = 5 = 0.792
1.7348 x i0

As indicated previously the equilibrium values are evaluated using an

iterative procedure. Therefore, the difference in thrust equal to 30 N is a

very small quantity which is assumed to represent a converged value. This

quantity will change the equilibrium angles only in 4th or 5th decimal point.

4.2.5 Stability Results

Using the equilibrium values from Section 4.2.4, a stability analysis

was performed. From the stability analysis, the eigenvalues of the linearized

system of equations are obtained. Since the present model consists of 31

degrees of freedom, one obtains 62 eigenvalues. Before proceeding to obtain
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the stability boundaries, the eigenvalues have to be identified. To

identify these eigenvalues, a parametric study was performed, in

which the stiffness of the supporting structure and the rotary inertia of the

vehicle were varied. The various other input quantities were kept fixed. Nine

cases, listed below, were studied. It should be noted that for all these cases,

the trim quantities are the same because the trim quantities are independent of

the parameters modified in the parametric study.

Case i: Data as presented in the previous section.

Case 2: The generalized stiffness in torsion, KS , is increased from

7.202 x 106 Kg m This increases the2 to 1.21 x 107 Kg 2 "
sec sec

torsional frequency of the supporting structure, _ST from 19.29 rad/sec

to 25 rad/sec. In nondimensional form, the increased torsional fre-

- 25 = 1.096quency is _ST = -_-

Case 3: Torsional frequency of the supporting structure is _T = 1.096. Rotary

inertia of the vehicle is increased in pitch and roll Ixx is increased

from 6.44 x 105 Kg m2 to 2.0 x 106 Kg m2. I is increased from
YY

2.59 x 106 Kg m2 to 4.7454 x 106 Kg m2.

Case 4: Bending stiffness of the supporting structure is increased in both dir-

ections. The generalized stiffnesses KSBXYandKSBXZare increased i_om

7.96 x 107 Kg/sec2 to 1.7 x 108 Kg/sec2. This increases the bending

frequency of the supporting structure in both directions from 34.18
- - 50

rad/sec to 50 rad/sec. In nondimensional form, _SBXY= _SBXZ= 22.807

2.192.

Case 5: Torsional frequency of the supporting structure is increased to 40

rad/sec. The generalized stiffness K corresponding to this frequencyST
is 3.098 x 107 Kg m2/sec2. In nondimensional form
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Case 6:

Case 7:

Case 8:

- 40 = 1.754. The bending frequencies are _SBXY= _SBXZ_ST= 22.80------7 =

2.192.

Rotary inertia in roll is increased from 6.44 x 105 Kg m2 to 2.0 x 106

Kg m2 - = 1.754 - = - = 2.192' _ST ' _SBXY _SBXZ "

Rotary inertia in pitch and roll are increased

I = 2.0 x 106 Kg m2, I = 4.7454 x 106 Kg m2
xx yy

-- B --

eST= 1.754, _SBXY = eSBXZ = 2.192

A spring is introduced in the X-direction of the translational motion

such that the nondimensional X-translational frequency is _Rx = 0.01.

2 -
Also I = 2.0 x 106 Kg m 2 I = 4.7454 x 106 Kg m = 1.754

xx ' yy ' eST '

eSBXY' = eSBXZ = 2.192

Case 9: A spring is introduced in the Y-direction of the translational motion

such that the nondimensional Y-translational frequency is WRy = 0.01.

I = 2.0 x 106 Kg m 2, I = 4.7454 x 106 Kg m 2 - = 1 754,
xx yy ' eST "

-- m

eSBXY = eSBXZ = 2.1_2.

The results of the stability analysis for these nine cases are presented

in Tables I, II and III, each column representing one case. For convenience

a row number is also used on the left hand side of the Tables I, II and III. Thus

(l_J) refers to the eigenvalue in Ith column and jth row.

It has been previously noted that the alternating mode of the blade is

independent of the other degrees of freedom. Thus there are two sets of identical

eigenvalues (presented from rows 28 - 33) one for each rotor. These are

- 0.5200 ± i 0.5845 x l01

- 0.6562 ± i 0.7265

- 0.6522 x 10-2 ± i 0.2346

Since it was assumed that the torsional frequency of the rotating blade was
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_ = 6.08 (Eq. 4.16), the eigenvalue - 0.5200 ± i 0.5845 x i01 should correspond

to alternative torsion mode. The second eigenvalue - 0.6562 ± i 0.7265

corresponds to alternating flap mode. This modehas a high damping and the

dampedflap frequency is 0.7265. The other eigenvalue -0.6522 x i0 ± i 0.2346

corresponds to the alternating lead-lag mode. This modehas a low damping.

These three modesare all dampedmodes. These alternating modeshave the same

values for all the nine cases. Since the alternating modesare stable and re-

main unchangedfor all cases, no further discussion of these modes is presented.

It can be seen from the results in column i, there are 5 eigenvalues

with frequencies close to 0.7 (i, 15 - i, 19) of which one eigenvalue has a

positive real part (I, 17). The eigenvalue is 0.1024 ± i 0.7428. This eigen-

value can correspond either to the torsional frequency of the structure or low

frequency progressive lead-lag modeor collective flap mode. Because the tor-

sional frequency of the structure (shown in preliminary calculations) is _ST =

0.846 (Eq. 4.21) and the collective lead-lag frequency is 0.233 (Eq. 4.15),

the progressive low frequency lead-lag modecould be close to the torsional

frequency of the supporting structure. Hence there can be coupling between

these modes. In order to identify the various eigenvalues, the parametric study

was performed with an aim to decouple various blade and vehicle modes.

Consider the results for case 7 (column 7 in Table II). First all the

eigenvalues will be identified as shownon pp. 107-108 and subsequently discussions

of each modeare given in Section 4.2.6. Since the HHLAmodel (Fig. 2) consists

of two rotor systems, the stability analysis will provide a pair of eigenvalues

for each rotor degree of freedom.

It is easy to identify the blade torsional, flap and lead-lag frequencies.

From the preliminary calculations, the torsional frequency is _=6.08 (Eq. 4.18),

the flap frequency is _B=I.027 (Eq. 4.14) and the lead lag frequency is _=0.233
(Eq. 4.15).
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Torsional Frequency O f the Blade

Collective -0.5198 ± i 0.5845 x i01

High Frequency or

Progressing

Low Frequency or

Regressing

-0.5199 ± i 0.5845 x i01

-0.5207 ± i 0.6846 x i01

-0.5202 ± i 0.6845 x i01

-0.5207 ± i 0.4845 x i01

-0.5202 ± i 0.4845 x i01

(7,5)

(7,6)

(7,3)

(7,4)

(7,7)

(7,8)

Flap Frequency of the Blade

Collective

High Frequency or

Progressing

-0.6341 ± i 0.7361

-0.6534 ± i 0.7210

-0.6555 ± i 0.1726 x i01

-0.6558 ± i 0.1727 x i01

(7,15)

(7,16)

(7,9)

(7,10)

Low Frequency or

Progressing -0.6565 ± i 0.2737

-0.6562 ± i 0.2737

(7,20)

(7,21)

Lead-lag Frequency of the Blade

Collective -0.6210 x 10-2 ± i 0.2337

-0.6524 x 10-2 ± i 0.2346

(7,22)

(.7,23)

High Frequency or

Progressing -0.1676 x 10-3 ± i 0.1136 x 101

-0.6923 x 10-2 ± i 0.1252 x i01

(7,13)

(7,14)

Low Frequency or

Progressing -0.4893 x 10-2 ± i 0.7536

-0.8424 x 10-2 ± i 0.7772

(7,18)

(7,19)
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Rigid Body Modes

Rigid body translation in X and Y directions

0.0

Rigid body rotation

pitch

roll

0.0

0.0 0.0

0.9833 x 10 -5 + i 0.2333 x 10 -4

-0.3621 x I0 -I 0.0

-0.1446 x i0 -I 0.0

-0.5947 x 10 -4 + i 0.3510 x i0 -I

(7,1)

(7,2)

(7,27)

(7,24)

(7,26)

(.7,25)

Elastic Modes of the Supporting Structure

Bending in X-Y plane (Horizontal)

-0.1029 x 10-2 ± i 0.217_ x i01 (7,11)

Bending in X-Z plane (Vertical)

-0.6136 x 10 -2 ± i 0.2188 x i01

Torsion -0.6372 x 10 -2 ± i 0.1782 x i01

(7,12)

(7,17)

4.2.6 Interpretation of the Physical Meaning of the Eigenvalues

Blade Torsion Modes

It is assumed that the uncoupled torsional rotating natural frequency of the

blade is _ = 6.08 (Eq. 4.16). Thus the eigenvalues corresponding to this fre-

quency must represent the collective torsional mode frequency. Frequencies

corresponding to _ ± i represent the cyclic mode frequencies. The cyclic

modes are _ic and _is" The progressing mode has a higher frequency and the

regressing mode is the lower frequency. All these modes have negative real

part indicating a positive damping and hence these modes are stable.
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Blade Flap Modes

The uncoupled rotating natural frequency in flap is shown to be _= 1.027

Eq. (4.14). In the presence of aerodynamics, the flap mode is heavily damped.

Thus the damped natural frequency in flap should be less than 1.027. In the

present case, the damped flap frequencies _Bare 0.7361 and 0.7210. These fre-

quencies correspond to the collective flap modes. Frequencies corresponding

to _ + I are the cyclic flap modes. These modes are also heavily damped. In

this case, both cyclic modes are progressing modes, one with higher frequency

and the other with a lower frequency. (When the collective mode frequency is

less than I, then both cyclic mode frequencies are progressing modes, Ref. 3.)

Blade Lead-La$ Modes

The uncoupled rotating natural frequency in lag is _ = 0.233, Eq. (4.15).

This particular frequency will appear in the eigenvalues as a collective

lead-lag frequency. Another typical property of lead-lag mode is that these

modes are very lightly damped. Since the collective lead-lag frequency is less

than I, both the cyclic mode frequencies are progressing. All these three

modes are lightly damped.

Inspection of the eigenvalues reveals that all the blade modes are

associated with two sets of eigenvalues. This is caused by the presence of

the two rotors each with its own set of blade modes.

Rigid Body Translation Modes

There are four eigenvalues corresponding to the rigid body translation

in X and Y directions. Two of them having zero real and zero imaginary parts. The

other eigenvalue set has a very small positive real part and a very small imaginary
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part. (0.9833 x 10-5 ± i 0.2333 x 10-4). The reason for choosing this eigen-

value as one corresponding to the rigid body translation is given below.

Comparingthe results given in columns 7 and 8, it can be seen that all

the eigenvalues except a few remain the same. The results of column 8 are

obtained by introducing a translational spring in the X-direction. The spring

constant is prescribed to yield a natural frequency of oscillation _RX 0.01.

From the results of column 8, it can be seen that the second eigenvalue corres-

ponds to this frequency having a value of 0.5621 x 10-5 ± i .1172 x I0-I.

The eigenvalues corresponding to R motion must be 0.0 + i 0.0, (8,1) , andY
0.9762 x 10-5 + i 0.0, which is assumedto be equivalent to zero. Then RY

motion results in a pure translatory motion. A similar observation can be made

whena translational spring is introduced in the Y-direction (results of

column 9) leaving the translational motion in X-direction free. It is seen

from the results that there is an eigenvalue corresponding to a frequency

_Ry = 0.01 which is 0.3349 x 10-5 _+i 0.1171 x I0-I (9,2). The eigenvalues

corresponding to translational motion in the X-direction becomes0.0 +

i 0.0 (9,1) and 0.9784 x 10-5 + i 0.0 (9,27). Then R motion becomesa pure
X

translational motion.

The previous statements also imply that when the R motion is oscil-
X

latory, R motion becomes pure translational motion and vice versa. How-
Y

ever, when both R and R are free (results of column 7) the combined Rx, R
x y Y

motions have eigenvalues which are complex conjugates. This oscillatory mode

is a divergent mode, but the frequency and damping are very small. This

indicates that R and R motions cannot be separated.
x y

*Recall, as indicated on P. 105 (l,J) stands for the Ith column and jth row.
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Ri$id Body Rotation Modes

There are four eigenvalues corresponding to pitch and roll motions. These

are

-0.5947 x 10 -4 _+ i 0.3510 x i0 -I

-0.3621 x i0 -I + i 0.0

-0.1446 x i0 -I + i 0.0

(7,25)

(7,24)

(7,26)

The oscillatory mode corresponds to the roll mode and the other two pure

damped modes correspond to pitch mode. These statements are further clarified

by discussion presented below. Using Eq. (4.11), the roll frequency of the vehicle

is

S h3 h4
_roll = ( PZ I - WEN )½ !

xx

Substituting the various quantities

k

_roll = (

1.3748 x 105 x 14.64 - 8.5539 x 104 x 8.544

2.0 x 106

i

) 22.807

Thus

- 0.8006

_roll = 22.807
= 0.3510 x 10 -I

This calculation shows that the eigenvalue -0.5945 x 10 -4 _+ i 0.3510 x i0 -I

(7,25) corresponds to the roll mode.

Using the same elementary Eq.(4.11),the pitch frequency is

= ( 1.3748 x 105 x 14.64 - 8.5539 x 104 x 8.544 )½ 1

pitch 4.7454 x 106 22.807

0.5197
= 0.2279 x i0 -I

22.807

But this frequency is not evident in the eigenvalues. Note that for a tandem

rotor system, £he pitch mode is a heavily damped mode. When the damping
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is in excess of the critical damping, the pitch motion becomesa pure damped

motion. Howeverwhen the inertia in pitch is increased, this modewill also

becomea oscillatory mode [Ref. 3]. The reason for the presence of a relatively

high dampingin pitch canbe explained using Fig. 2. For positive pitching motion of

the vehicle, rotor systemRlmovesupand rotorR2moves down. If _ isthepitchrate,Y

then the rotor R1 hasanupward velocity of _Fl0y, is experienced by rotor RI. This in-

creases the net inflow velocity sensedby rotor RI. If the net inflow is increased, the

effective angle of attack experienced bya typical blade section decreases. This in effect

decreases the thrust developed by the rotor RI. Similarly for rotor system R2,

the net inflow velocity decreases which in effect increases the angle of attack

and hence the thrust. The combined effect of the increase in thrust for rotor

system R2 and decrease in thrust for RI due to a positive pitch rate e , tendsY

to restore the vehicle to its equilibrium position. This restoring force depends

on _ andproducesdampingin pitch. Whenthis dampingis high, the pitch motion be-Y
comesa pure dampedmotion. In the present case, the damping in pitch is suf-

ficiently high so that the eigenvalues have only negative real part.

it is well known that for second order system with damping above the critical

damping, an increase in inertia will bring the two eigenvalues closer provided that

this increase in inertia is such that even with the increased inertia the system

is still overdamped. A further increase inertia will make the eigenvalues to

becomecomplex conjugates. This effect is evident from the results by comparing

the columns 6 and 7.

From column 6, the eigenvalues corresponding to pitch are

-0.8143 x i0 -I _+i 0.0 (6,24)

-0.1183 x i0 -I + i 0.0 (6,26)
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The rotary inertia in pitch for this case (case 6) is I = 2.59 x 106 Kg m2.
YY

Whenthe rotary inertia is increased to 4.7454 x 106 Kg m2, keeping the other

parameters the same, the eigenvalues corresponding to pitch motion become

(column 7)

-0.3621 x i0 -I + i 0.0

-0.1446 x i0 -I + i 0.0

(7,24)

(7,26)

This shows that the eigenvalues have approached each other. This validates the

statement that the pitch mode, in this case, is a overdampedmode.

Elastic Modes of the Supportin$ Structure

In the present analysis, the supporting structure is modelled by three

normal modes: two for bending and one for torsion. The two bending modes corres-

pond to bending in X-Z plane (Vertical) and bending in X-Y plane (Horizontal).

The bending mode in X-Z plane has higher damping than that corresponding to the hori-

zontal bending mode. The explanation is the same as that given for pitch motion,

in previous section.

The eigenvalues for

bending in X-Z direction is -0.6136 x 10 -2 + i 0.2188 x I01 (7,12)

bending in X-Y direction is -0.1029 x 10 -2 + i 0.2175 x i0 i (7,11)

torsion is -0.6372 x 10 -2 _+ i 0.1782 x 101 (7,17)

The identification of these modes is based on the frequencies assumed in obtaining

the results presented in column 7

_SBXY = _SBXZ = 2.192

and

_ST = 1.754
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4.2.7 Coupling of Various Modes

The coupling between various blade modes and body modes are shown in

Figs. 12-16. Since the HHLA model vehicle (Fig. 2) consists of two rotor

systems coupled by the supporting structure, it was shown in Section 4.2.5

that the stability analysis provides a pair of eigenvalues for each rotor degree

of freedom. Hence for the purpose of identification, in the presentation of the

results shown in Figs. 12-16, the rotor modes will be referred to as mode i

and mode 2, such as collective flap mode i, collective flap mode 2 and high

frequency flap mode 1 and high frequency flap mode 2, etc.

Figure 12 illustrates the variation of the eigenvalues of blade lead-lag

modes and the supporting structure bending modes as a result of an increase in

the bending stiffness (KsBxY) of the supporting structure in X-Y (horizontal)

plane. The bending stiffness KSBXY was increased in increments from 5.09 x 107

N/m to 1.74 x 108 N/m, such that the corresponding uncoupled nondimensional

bending frequency in X-Y plane (_SBXY) assumed the values _SBXY = 1.2, 1.499,

1.754, 2.192, where the frequencies are nondimensionalized with respect to the

rotor speed of rotation _, where _ = 217.79 R.P.M. The arrows in the figure

indicate the direction along which the eigenvalues of the modes cnange due to an

increase in KSBXY. The eigenvalues of the other modes, which are not shown in the

figure, remain unaffected by the variation in KSBXY. It can be seen from Fig. 12

that the bending mode, in X-Y plane, of the supporting structure is strongly couple,

with the high frequency lag mode 2. The high frequency lag mode 2 which was

initially unstable becomes more stable as KSBXY is increased. The damping in the

bending mode in X-Y plane decreases asympototically with an increase in frequency

and this mode is always stable. The low frequency lead-lag mode 2 shows a slight
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decrease in damping as KSBXYis increased. The eigenvalues corresponding to the

bending mode in X-Z plane and the high frequency lag mode1 are not affected by

the changes in KSBXY. However, since these two modeshave nearly equal fre-

quencies it can be seen that the high frequency lag mode1 is unstable.

Figure 13 presents the variation of eigenvalues of the blade lead-lag modes

and the supporting structure bending modesas a result of an increase in the

bending stiffness (KsBxz) of the supporting structure in X-Z (vertical) plane.

The bending stiffness KSBXZwas increased in increments from 7.96 x 106 N/m

to 1.74 x 108 N/m and the corresponding nondimensional uncoupled bending frequency

in X-Z plane (_SBXZ)assumedthe values _SBXZ= 1.499, 1.754, 2.192. It can be

seen from Fig. 13 that the bending mode in X-Z plane is strongly coupled with

high frequency lag modei. The high frequency lag mode1 which was initially

unstable becomesa stable modeas KSBXZis increased from 7.96 x 107 N/m

(_SBXZ= 1.499) to 1.09 x 108 N/m (_SBXZ= 1.754). But a further increase in

KSBXZto 1.74 x 108 N/m does not affect the eigenvalue corresponding to the

high frequency lag modei, indicating that these two modesare decoupled. Damping

in the bending modein X-Z plane decreases drastically at tne beginning and once

the bending modeand the high frequency lag mode 1 are decoupled, the decrease

in damping of the bending modein X-Z plane is very small. Dampingin the torsion

modeof the supporting structure and low frequency lag mode1 are slightly affected

as KSBXZis increased. Since the torsion modeand the low frequency lag mode1

have frequencies which are close to each other, the figure clearly indicates that

the lag modei is unstable. The eigenvalues corresponding to the rest of the

modesare unaffected.
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Figure 14 shows the eigenvalue variation in the rotor lead-lag modes

and the torsion modeof the supporting structure as a result of an increase

in the torsional stiffness (KsT) of the supporting structure. The torsional

stiffness, KST, was increased in increments from KST= 1.59 x 106 N°mto

3.99 x 107 N.m and the corresponding uncoupled nondimensional torsional fre-

quency (_ST) of the supporting structure are _ST -- 0.4, 0.55, 0.846, 1.096, 1.2,

1.3, 1.4, 1.5, 1.754, 2.0. It is evident from the figure that the low frequency

lag mode2 and high frequency lag mode2 remain unaffected during the variations

in KSTand these modesqre stable. In Fig. 14, the different curves are divided

into three segments represented by points A, B, C and D. The curves between

points A to B refer to the range of KST= 3.01 x 106 N.m to 7.20 x 106 N.m

(reST-- 0.55 to 0.846); the curves between points B to C refer to the range

KST= 7.20 x 106 N.m to 1.685 x 107 N.m (_ST = 0.846 to 1.3); and th rves

between points C to D refer to the range KST= 1.685 x 107 N.m to 3.1 x 107 N.m

(_ST = 1.3 to 1.754).

It is evident from Fig. 14 that in the ra_e A to B, as the torsion_J_

stiffness KST is increased, the torsion modeof the supporting structure becomes

increasingly stable andits frequency is increasing; the low #req_,e-__ylag mode1

becomesincreasingly unstable with its frequency slightly increased. This clear]

indicates that the torsion modeis strongly coupled with the low frequency lag

mode i. The high frequency lag mode 1 experiences a slight increase in frequenc]

but its damping remains almost the same. In this range, A to B, the eigenvalues

of these three modeshave been distinctly identified based on their uncoupled

nondimensional frequencies. In the range B to C, as the torsional stiffness KST

is increased, the damping in the low frequency lag modeI decreases and its fre-

quency tends to increase towards 1.0. At the sametime, the damping in torsiona_
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modeof the supporting structure decreases drastically and a slight change in

the frequency is observed (i.e. the frequency initially increases and then

decreases). The high frequency lag modeI shows an increase in frequency with

no appreciable change in damping. In this range B to C, the eigenvalues of

these three modesdo not exhibit a direct one to one correspondence to the

uncoupled nondimensional frequencies, implying that all these modesare coupled.

Hence in this range, B to C, the reference to the various modes, as torsion mode,

low frequency lag mode I and high frequency lag mode I, is only for the convenience

of explaining the variation of the eigenvalues. Whenthe torsional stiffness

KSTwas increased still further, i.e. the range C to D, the eigenvalues start

exhibiting a correspondence to the nondimensional uncoupled frequencies indicating

that these three modesare slowly getting decoupled. In this range, C to D, the

torsional modeof the supporting structure has low damping and it tends to decrease

asymptotically while the frequency increases from 1.5 to 1.75. The high frequency

lag modei showsan increase in the frequency and the modebecomesstable at

the point D. The damping in the low frequency lag modeI decreases while the

frequency undergoes a slight reduction. Beyond the point D i.e. for

> 3 1 x 107 N.m the eigenvalues of low frequency lag mode I and high frequencyKST- .

lag mode i shownegligible change and the damping in torsion moderemains the same

but its frequency increases. Beyondpoint D all the three modesare stable.

Another interesting observation which can be madefrom Fig. 14 is associated

with the effect due to the increase in torsional stiffness KST. WhenKST is in-

creased from 1.685 x 107 N.m to 3.99 x 107N.m (curve in the range C to D and

beyond), the eigenvalues corresponding to the high frequency lag modei tend to

approach the eigenvalue corresponding to the high frequency lag mode2 (which
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remains unaffected during the variation in KST) and similarly the low fre-

quency lag mode1 approach to the low frequency lag mode2. This behavior

seemsto indicate that as the torsional stiffness of the supporting structure

is increased the coupling between the rwo rotors due to the torsional deformation

of the supporting structure is eliminated. As a result of this lack of coupling,

the eigenvalues corresponding to the high frequency lag modes 1 and 2 and low

frequency lag modes 1 and 2 approach each other. It should be noted that elimin-

ation of the coupling of the rwo rotors, due to the torsional deformation of the

supporting structure, does not imply that the two rotors are totally decoupled.

The rotors are still coupled through the bending deformation of the supporting

structure and rigid body pitch motion of the vehicle. The presence of this coupling

causes the eigenvalues of the low frequency and high frequency lag modes to approach

each other rather than coalescing.

The last observation which can be madeusing Fig. 14 is that the high frequency

lag mode i, low frequency lag mode 1 and torsion modeof the supporting structure

undergo a reversal in their characteristics as KST is increased from 1.59 x 106

N.m. Thus, the modewhich was initially a distinct torsion modebecomesa low

frequency lag mode I; the low frequency lag mode1 becomesa high frequency lag

mode I and the high frequency lag mode1 becomesa torsion mode. For low and

• , < i 59 x 106 N,m (_ST <-0.4)high values of the torsional stiffness (i e. KST- .

and KST > 3.10 x 107 N.m (_ST -> 1.754)) the torsional mode of the supporting

structure, the low frequency by mode 1 and high frequency by mode 1 are all

stable. For intermediate values of the torsional stiffness of the supporting

one of the lag modes is unstable.
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The variation of the eigenvalues of the collective flap modesand body

pitch modedue to increase in body inertia in pitch is presented in Fig. 15. It

is evident from the figure that the pitch mode is a pure dampedmode. An

increase in pitch inertia causes the eigenvalues, corresponding to the pitch

mode, to approach each other. The eigenvalues of the collective flap mode2

tend to approach the eigenvalue of the collective flap modeI. The pure damped

nature of the pitch modeis associated with the presence of two rotors. During

pitch motion the net inflow in the two rotor system changes. If in one rotor

system the net inflow increases, then in the other one the inflow decreases and

vice versa. These changes in inflow results in changes in the thrust in the two

rotor systems. The rotor system which movesup, during pitch motion, experiences

a reduction in thrust due to the increased inflow and the rotor system which

movesdownproduces more thrust due to the decreased inflow. These changes in

the thrust tend to restore the vehicle to its equilibrium position. Since this

restoring force is proportional to the pitch rate, this mechanismproduces a

damping in pitch. In the present case, the pitch motion is overdamped. Hence

an increase in inertia causes the eigenvalues, corresponding to the pitch mode

to approach each other, as shownin Fig. 15.

Figure 16 illustrates the variation of eigenvalues corresponding to the low

frequency lag mode2 and body roll modeas a result of an increase in inertia

in roll. An increase in roll inertia tends to decrease the damping in roll,

furthermore its frequency is also reduced. The low frequency lag mode2 tends

to becomemore stable. The roll mode, for the model vehicle, is a damped

oscillatory mode. This is different from the pure dampedmodenormally observed

in a conventional tandem rotor helicopter. The reason for this oscillatory nature

of the roll modeis due to the presence of the buoyancy of the envelope.

119



For all the cases analyzed, it was found that the flap and torsional modes

of the rotor are always stable. The eigenvalues corresponding to the cyclic

flap modesand all the torsion modesare not affected by the variation in the

quantities used in this parametric study. The alternating modesof the rotor

were also found to be stable. The degree of coupling, as well as the relative

strength of the coupling, between the various blade modesand the body modes

is presented in a qualitative manner in Table IV. It is evident from this

table that the supporting structure elastic modesare strongly coupled with

the low frequency and high frequency lead-lag modes.

4.2.8 Effects of Buoyancy on the Stabilit X of the Vehicle

The effects of varying the buoyancy ratio on the stability of the vehicle

were also studied, by performing the stability analysis at different buoyancy

ratios. During this analysis, only the buoyancy ratio was varied while the

rest of the blade and vehicle parameters were kept fixed. The vehicle para-

meters are the same as those used in Case 7, presented in Section 4.2.5.

The results of these analyses for different buoyancy ratios are presented in

Tables V and VI.

Table V presents the results of the equilibrium (trim) analysis for various

buoyancy ratios. It can be seen that as the buoyancy ratio is decreased, the

thrust coefficient of the rotors (CT) increases. The equilibrium angles of the

blade in flap, lead-lag and torsion, the inflow ratio and the collective pitch

angle, also increase with decrease in buoyancy ratios. Table V also presents

the nondimensional roll frequency of the vehicle (_roll) at different buoyancy

ratios. These roll frequencies are calculated using Eq. (4.11). These fre-

quencies will be helpful in identifying the roll mode in the stability analysis.
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Table Vl presents the results of the stability analysis at different buoyancy

ratios. The results of the stability analysis, presented in Table Vl, are also

shownin a graphical manner in Figs. 17 and 18. Figure 17 depicts the variation

of eigenvalues of the supporting structure elastic modeswith decrease in

buoyancy ratio. The direction of arrows in the figure indicates the variation

of the eigenvalues as a result of the decrease in buoyancy ratio. The frequencies

corresponding to the supporting structure elastic modesare not affected by the

variation in buoyancy ratio. However, the damping in bending in X-Y plane

increases, the damping in X-Z plane decreases, while the damping in torsion

modeincreases.

Figure 18 presents the variation of eigenvalues of pitch and roll modeswith

buoyancy ratio. As the buoyancy ratio is decreased, one of the eigenvalues

corresponding to the pitch modedecreases while the other eigenvalues increases.

The pitch moderemains a pure dampedmode. The roll modewhich was initially

a stable modebecomesunstable for buoyancy ratios BR _ 0.6. The results shown

in Table Vl also indicate that when the buoyancy ratio is decreased, the damping

in the lead-lag modesof the rotors increases while the damping in flap and torsion

modesof the rotoes decreases. Howeverchanges in the buoyancy ratio have only

a minor effect on the frequencies of the rotor modes. From the results shownin

Table Vl, it can be seen that for a 40%reduction in buoyancy ratio, the damping

in torsion modesdecreases by 12%; the damping in flap modesdecreases by 12%

and the damping in lag modesincreases by 200%.

The rigid body translation modeis stabilized as the buoyancy ratio is

decreased.

The most important observation from these results is that for buoyancy ratio

BR= 0.7, all the eigenvalues have negative real parts indicating that the

vehicle is stable at this buoyancy ratio.
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5. CONCLUDING REMARKS

This report presents the equilibrium (trim) equations and linearized stability

equations for the dynamics of the coupled rotor/vehicle system in hovering flight.

The stability equations are written in multiblade (or rotor plane) coordinate

system. Two types of problems are solved. First, the aeromechanical stability

of a helicopter in ground resonance is analyzed, and the analytical results are

compared with the experimental results available in literature. It was found

that the results of the present analysis compare very well with the experimental

results. This indicates that the theoretical model for the coupled rotor/body

dynamics appears to be accurate.

Next, the aeromechanical stability of an HHLA type vehicle in hover was

analyzed. The vehicle consisted of two rotors_ a buoyant envelope and an under-

slung load attached to a flexible supporting structure. For this vehicle, the total

number of degrees of freedom is 31 and there are 31 coupled equations representing

the dynamics of the system. Two computer programs were developed to analyze

the trim and stability of the vehicle. The restuls of a sample problem are also

presented in this report.

Before describing the conclusions obtained from the stability analysis of

the HHLA type vehicle conducted in this study, it is important to emphasize

that the vehicle model used in this study has only two rotors and not four rotors,

which are present in the HHLA type vehicle under construction. Furthermore, no

lead lag dampers were included in the treatment of the blade lead-lag dynamics

Incorporation of such dampers would have probably stabilized any instability

observed in the lead-lag degrees of freedom of the vehicle.
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The stability analysis yields 62 eigenvalues, corresponding to the 31 degrees

of freedom. The primary aim was to identify the 62 eigenvalues and relate them

to the various modesof the rotor/vehicle assembly. This identification was

accomplished by performing a parametric study in which the primary parameters

allowed to vary were the bending and torsional stiffness of the supporting

structure combined with the rotary inertia of the vehicle in pitch and roll.

This parametric variation was done in order to decouple the blade modesfrom the

vehicle and the supporting structure modes. In total, nine cases were analyzed.

In these cases, the underslung load was not included. Based on the results

obtained for these cases, the various eigenvalues and the coupling amongdifferent

modeswere identified and physical insight on the dynamics of the vehicle was

developed. The most important results of this study are summarizedbelow.

Cyclic lead-lag modesof the rotors couple strongly with the pitch, roll

and bending in two orthogonal plane and torsion of the flexible supporting

structure. This shows that the frequencies of vibrations of the supporting

structure must be separated from the frequencies of the rotor lead-lag modes.

This also implies the importance of modeling the supporting structure with an

adequate numberof elastic modes.

The stability analysis of the coupled rotor/vehicle dynamics illustrates

the aeroelastic stability of the rotor, coupled rotor/vehicle aeromechanical

stability such as air resonance and the vehicle stability in the longitudinal

and lateral planes. Complete information of these ingredients are all captured

by the analytical model representing the coupled rotor/vehicle dynamics.

In the discussion of the results it has been noted that the pitch mode

of the vehicle is a pure dampedmodewhile the roll modeis a stable oscillatory

mode. The oscillatory nature of the roll modecan be attributed to the presence

of the buoyant envelope.
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The present analysis yields a divergent modewhich corresponds to a pure

translational mode. It is also found that when the vehicle is free in

longitudinal and lateral translational motions, the results indicate a os-

cillatory modefor the rigid body translation. However, when the translational

motion in one direction is restrained, the translational motion in the other

direction becomesa pure divergent motion. This indicates that the longi-

tudinal and lateral dynamics cannot be separated in the analysis of coupled

rotors/vehicle dynamics for vehicles of the type considered in this study.

The stability of the vehicle was also studied at various buoyancy ratios

and it was found that at a particular buoyancy ratio, the eigenvalues corresponding

to all the modeshave negative real part indicating that the vehicle is stable

at this buoyancy ratio.

Based on the numerical studies conducted in this report it appears that the

consistent analytical model, for the dynamics of coupled rotor/vehicle system,

developed in this study is avalid mathematical model. The stability analysis

of coupled rotor/vehicle dynamics yields useful information on both the aero-

elastic stability, aeromechanical stability and also the vehicle dynamic stability.
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Case 1

_SBXY=_SBXZ=I.499,_ST=0.846

I = 6.44 x 105 Kg m 2
xx

I = 2.59 x 106 Kg m2
YY

Case 2

_SBXY=_SBXZ=I.499,_ST _.096

I = 6.44 x 105 Kg m 2
xx

I = 2.59 x 106 Kg m 2
YY

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-.5206 + i .6846 x i01 -.5206 -+ i .6846 x i01

-.5203 + i .6845 x i01 -.5203 ± i .6845 x i01

-.5198 + i .5845 x i01 -.5198 +- i .5845 x i01

-,5198 ± i .5844 x i01

-.5207 ± i .4845 x i01

-.5198 ± i .5844 x i01

Case 3

_SBXY=_SBXZ=].499,_ST=I.096

I = 2.0 x 106 Kg m 2
xx

I = 4.7454 × 106 Kg m 2
YY

Case 4

_SBXY=_SBXZ=2.192,_ST=I.096

Ixx = 6.44 x 105 Kg m 2

I = 2.59 × 106 Kg ,i2
YY

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-.5206 ± i .6846 x I01 -.5206 ± i .6846 x i01

-.5202 ± i .6845 x i01 -.5203 ± i .6845 x i01

-.5198 ± i ,5845 x i01

-.5199 ± i .5845 x i01

-,5198 ± i ,5845 x i01

-.5198 ± i .5844 x I01

-.5207 ± i .4845 x i01 -.5207 ± i .4845 x i01 -.5207 ± i .4845 x i01

-.5203 ± i .4845 x I01 -.5203 ± i .4845 x i01 -.5202 ± i .4845 x i01 -.5203 ± i .4845 x i01

-.6556 ± i .1727 x i01 -.6556 ± i .1727 x i01 -.6556 i i .1727 x i01 -.6555 ± i .1727 x i01

-.6556 ± i .1727 x i01 -.6556 ± i .1727 x i01 -.6556 ± i .1727 x I01 -.6558 ± i .1727 x i01

-.4722xlO-2±i.1555xlO 1 -.4722xlO-2±i.1555xlO 1 -.4693x10-2±i.1555xlO I

-.8915x10-2±i.1474x101

-.1030x10-2±i.2175x101

.2525x10-1±i.1467xlO 1 .2525x10-1±i.1467xlO 1 -.6269x10-2±i.2189xlO I

-.1395xlO-l±i.1408x101 -.4803x10-1±i.1462xlO 1 -.4803x10-1±i.1462xlO I -.l143x10-1±i.1424x101

-.3021xlO-2±i.l195xlO I -.3021xlO-2±i.l195x101 -.2948x10-2±i.l193xlO 1 -.7002xlO-2±i.1254xlO 1

-.6157 ± i .7452 -.6157 ± i .7452 -.6341 ± i .7361 -.6157 ± i .7452

-.6483 ± i .7167 -.6483 ± i .7167 -.6483 ± i .7167 -.6534 ± i .7210

.1024 ± i .7428 .7266 x I0-I± i .8399 .7266 x i0-i± i ,8399

-.5375 x 10-2± i .7566

.7352 x 10-i± i ,8396

-.4631 x 10-2± i .7525

-.7611 x i0-I± i .8151 -.7701 x i0-I ± i .8150

-.6565 ± i .2737 -.6565 ± i .2739

-.6562 ± i .2738 -.6562 ± i .2738

-.6210 x 10 -2i i .2337 -.5697 x 10-2± i .2331

-.5095 x 10-2± i .7555-.5095 x 10-2± i .7555

-.1057 ± i .7306 -.7611 x i0-I± i .8151

-.6565 ± i .2739 -.6565 ± i .2739

-.6562 ± i .2739 -.6562 ± i .2738

-.5697 x 10-2± i .2331 -.5697 x 10-2± i .2331

-.6527 x 10 -2+- i .2346 -.6527 x 10-2± i .2346

-.8143 x i0 -1 0.0

-.6527 x 10-2± i ,2346 -,6524 x 10-2± i .2346

-.8143 x i0-I 0.0-.8143 x i0 -I 0.0 -.3621 x i0-I 0.0

-.2106x10-3±i.6174x10 -I -.2106xlO-3±i.6147xlO -I -.5949xlO-4±i.3510x10 -I -.2105xlO-3±i.6174x10 -I

-.1183 x i0-I 0.0 -.1183 x i0 -I 0.0 -.1446 x i0 -I 0.0 -.1183 x i0 -I 0.0

.9833x10-5±i.2333xlO -4 .9833xlO-5±i.2333x10 -4 .9833xlO-5±i.2333xlO -4 .9833xlO-5±i.2333x10 -4

. -.5200 ± i .5845 x i01 -.5200 ± i .5845 x i01 -.5200 ± i .5845 x i01 -.5200 ± i .5845 x 101

-.6562 ± i .7265 -.6562 ± i .7265 -.6562 ± i .7265 -.6562 ± i .7265

-.6522 x IO-2Z i .2346 -.6522 x 10-2± i .2346 -.6522 x 10-2± i .2346 -.6522 x 10-2± i .2346

-.5200 ± i . 5845 x i01 -.5200 ± i .5845 x i01 -.5200 ± i .5845 x i01 -.5200 ± i .5845 x i01

-.6562 i i .7265 -.6562 t i .7265 -.6562 ± i .7265 -.6562 ± i .7265

-.6522 x 10-2± i .2346 -.6522 x 10-2± i .2346 -.6522 x i0-2± i .2346 -.6522 x 10-2+- i .2346

Table I Results of Stability Analysis for Various Configuration

Parameters

BR = 0.792, C T = 0.00158
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Case 5

_SBXY'_SBXZ=2.192,_ST "1.754

I I 6.44 x 105 Kg m 2
xx

I = 2.59 x 10 6 Kg m 2
YY

Case 6

_SBXY'_SBXZ=2.192,_ST _1.754

I - 2.0 x 106 Kg m 2
xx

I - 2.59 x 10 6 gig m2
YY

Case 7

_SBXY=_SBXZ=2.192,_ST =1.754

I = 2.0 x 106 Kg m 2
xx

I = 4.7454 x 10 6 Kg m 2
YY

Case 8

_SBXY=_SBXZ=2.192, _ST = I. 754,

_Rx:O.Ol

I = 2.0 x 10 6 Kg m 2
xx

I = 4.7454 x 106 Kg m 2
YY

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 .5621xi0 -5+i. 1172xi0 -I

-.5207 + i .6846 x i01 -.5207 ± i .6846 x i01 -.5207 + i .6846 x i01 -.5207 + i .6846 x i01

-.5203 + i .6845 x i01 -.5202 + i .6845 x i01 -.5202 ± i .6845 x I01 -.5202 ± i .6845 x i01

-.5198 + i .5845 x i01 -.5198 + i .5845 x I01 -.5198 + i .5845 x i01 -.5198 ± i .5845 x i01

-.5198 ± i .5844 x I01 -.5198 ± i .5844 x i01 -.5199 + i .5845 x i01 -.5199 ± i .5845 x i01

-.5207 ± i .4845 x i01 -.5207 + i .4845 x 101 -.5207 -+ i .4845 x i01 -.5207 + i .4845 x 101

-.5203 + i .4845 x 101 -.5202 ± i .4845 x I01 -.5202 -+ i .4845 x i01 -.5202 ± i .4845 x i01

-.6555 ± i .1726 x i01 -.6555 + i .1726 x i01 -.6555 ± i .1726 x i01 -.6555 + i .1726 x i01

-.6558 + i .1727 x I01 -.6558 -+ i .1727 x i0 ! -.6558 + i .1727 x i01 -.6558 -+ i .1727 x i01

-. 1030x10-2+i.2175x101 -. 1032x10-2+i.2175x101 -. 1029xi0-2+ i.2175x101 -. 1029x10-2±i.2175xi01

-. 6136x10-2+i. 2188xi01 -. 6136xi0-2±i.2188x101 -.6136xi0-2+ i.2188x101 -. 6136xi0-2+i.2188x101

-, 1676xi0-3+i. 1136xi01 -.1676x10-3±i.l136x101 -.1676x10-3+i.l136x101 -.1676x10-3+i.l136x101

-. 7002x10-2+i. 1254x i01 -6951xi0-2+i. 1252xi01 -. 6923x10-2+ i. 1252xi01 -. 6923x10-2+ i. 1252x101

-.6157 + i .7452 -.6157 + i .7452 -.6341 + i .7361 -.6341 ± i .7361

-.6534 + i .7210 -.6534 + i .7210 -.6534 + i .7210 -.6534 + i .7210

-. 6372x10-2+ i. 1782x101 -. 6372xi0-2+ i. 1782x101 -. 6372x10-2+ i. 1782xl01 -. 6372x10-2+ i. 1782x101

-.4631 x 10 -2 +- i.7525 -.4830 x 10 -2 + i.7534 -.4893 x 10 -2 + i.7536 -.4893 x 10 -2 + i.7536

-.8424 x l0 -2 + i.7772 -.8424 x l0 -2 ± i.7772 -.8424 x l0 -2 + i.7772 -.8424 x l0 -2 + i.7772

-.6565 + i .2739 -.6565 + i .2737 -.6565 -+ i .2737 -.6565 +- i .2737

-.6562 _+ i .2737 -.6562 + i .2737 -.6562 + i .2737 -.6562 ± i .2737

-.5697 x l0 -2 ± i.2331 -.5697 x l0 -2 + i.2331 -.6210 x l0 -2 + i.2337 -.6210 x l0 -2 + i.2337

-.6524 x 10 -2 ± i.2346 -.6524 x l0 -2 t i.2346 -.6524 x l0 -2 + i.2346 -.6524 x l0 -2 + i.2346

-.8143 x l0 -I 0.0 -.8143 x l0 -l 0.0 -.3621 x l0 -I 0.0 -.3621 x l0 -I 0.0

-. 2 I05x10-3+ i. 6174x10 -I -. 5947xi0-4+i.3510xl0 -I -. 5947x10-4+i.3510xl0 -I -. 5947x10-4± i.3510xl0 -I

-.1183 x i0 -I 0.0 -.1183 x l0 -I 0.0 -.1446 x l0 -I 0.0 -.1446 x l0 -I 0.0

•9833x10-5+i.2333x10 -4 .9833x10-5+i.2333x10 -4 .9833x10-5+i.2333x10 -4 .9762 x l0 -5 0.0

-.5200 ± i .5845 x l01 -5200 ± i .5845 x l01 -.5200 + i .5845 x l01 -.5200 ± i .5845 x l01

-.6562 + i .7265 -.6562 ± i .7265 -.6562 + i .7265 -.6562 + i .7265

-.6522 x l0 -2 + i.2346 -.6522 x l0 -2 + i.2346 -.6522 x 10 -2 + i.2346 -.6522 x 10 -2 + i.2346

-.5200 + i .5845 x I01 -.5200 ± i .5845 x l01 -.5200 + i .5845 x l01 -.5200 + i .5845 x l01

-.6562 t i .7265 -.6562 ± i .7265 -.6562 + i .7265 -.6562 + i .7265

-.6522 x l0 -2 + i .2346 -.6522 x l0 -2 ± i .2346 -.6522 x 10 -2 _+ i .2346 -.6522 x l0 -2 + i .2346

Table II Results of Stability Analysis for Various Configurations

Parameters

BR = 0.792, C T = 0.00158

OF POOR QUAI.I_
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i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

Case 9

_SBXY=_SBXZ=2.192,_ST=I.754,

go :o.oi
Ky

Ixx = 2.0 x 10 6 Kg m2

I : 4.7454 x 10 6 Kg m2
YY

0.0 0.0

•3349xi0 -5+-i. 117 IxlO -I

-.5207 _+ i .6846 x I01

-.5202 +_ i .6845 x i01

-.5198 ± i .5845 x i01

-.5198 _+ i .5845 x i01

-.5207 ± i .4845 x 101

-.5202 _+ i .4845 x 101

-.6555 z i .1726 x 101

-.6558 ± i .1727 x i01

-. 1029xi0-2+_i. 2175x101

-.6136xi0-2_ +i.2188xI01

-. 1676xi0-3±i. 1136xi01

-.6923x10-2_+i. 1252x101

-.6341 _+ i .7361

-.6534 + i .7210

-. 6372x10-2_+i.

-.4893xi0-2_+i.7536

-.8424 x 10 -2 _+ 1.7772

-.6565 _+ i .2737

-.6562 _+ i .2737

-.6210 x 10 -2 _+ i .2337

-.6524 x 10 -2 _+ i.2346

-.3621 x 10 -I 0.0

-. 5947xi0-4± i. 3510xlO -I

-.1446 x i0 -I 0.0

.9784 x 10 -5 0.0

-.5200 +_ i .5845 x i01

-.6562 _+ i .7265

-.6522 x 10 -2 +_ i .2346

-.5200 _+ i 5845 x 10 -I

-.6522 _+ i .7265

-.6522 x 10 -2 ± i .2346

Table III Results of Stability Analysis for Various

Configuration Parameters

BR = 0.792, CT = 0.00158
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Lead-lag Modes Flap Modes

MODES

Supporting structure
symmetric bending in
x-y (horizontal) plane

collec-
High tive

freq. freq.
1 2 i 2

XXX

Low

freq.

1 2

XX

collec-

High tire

freq. freq.

1 2 1 2

Low

freq.

1 2

Supporting structure

symmetric bending in

x-z (vertical) plane

XXX X XX X

Supporting structure

Itorsion(antisymmetric) XXX KXX

Body pitch K X X

Body roll K XX

X

Legend: XXX = Strongly coupled, XX = Moderately coupled, X = Weakly coupled

Table IV Coupling Between Various Body Modes and Blade Modes
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Buoyancy

Ratio

BR eO BkO _kO qbkO % CT (°roll

0.792 4.206 ° 2.302 ° -3.963 ° -0.115 ° 0.03272 .00158

0.7 5.243 ° 3.209 ° -5.074 ° -0.161 ° 0.03820 .00228

0.6 6.259 ° 4.179 ° -6.453 ° -0.236 ° 0.04313 .00304

0.5 7.207 ° 5.142 ° -7.994 ° -0.352 ° 0.04743 .00380

.3510xi0 -I

.3173xi0 -I

.2761xi0 -I

.2276xi0 -I

Table V Equilibrium Values at Different Buoyancy Ratios

- - - 2
msT=l.754, mSBXY=wSBXZ=2.192,Iyy=4.7454x106kg.m

I =2.0xl06kg.m 2
XX
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GREGiNAL PP_C-.E

OF.. POOR QUALITY

coST = 1.754, cOSBX_ = _SBXZ = 2.192

lyy = 4.7454 x 106 Kg m 2, Ixx = 2.0 x 106 Kg m 2

Supporting

Structure

Alternating

Modes

Blade

Torsion

Blade

Flap

BR = 0.792 0.7 0.6

-.5207 ± i .6846 x I01 -.4954 ± i .6861 x I01 -.4727 ± i .6892 x I01

-_5202 ± i .6845 x i01

-.5198 ± i .5845 x i01

1.4946 ± i .6859 x i01

-.4940 ± i ._5858 x i01

-.5199 ± i .5845 x i01 -.4940 ± i .5859 x i01

-.5202 ± i .4845 x 101

-.5207 ± i .4845 x i01

-.6558 ± i ,1727 _ i01

-.6555 ± i .1726 x i01

-.6341 ± i .7361

-.4945 ± I .4859 x i01

-.4956 ± i .4858 x I01

_-6411 ± i .1721 x i01

-.6402 ± i .1721 x i01

-.6192 % i .7313

-.4715 ± i .9889 X i01

-.4707 ± i .5888 x i01

7.4706 ± % .5888 x I01

-.4731 ± i .4887 x i01

-.4713 ± i .4889 x 101

-.6118 ± i .1724 x.lO 1

-.6143 ± i .1725 x i01

-.5925 ± i .7362

-.6534 ± i .7210 -.6393 t i .7158 -.6136 ± i .7196

-.6565 ± i .2737 -.6426 t i .2788 -.6162 ± i .2750

-.6562 Z i .2737 -.6420 ± i .2789 -.6172 ± i .2748

-.6923xlO-2±i.1252xlO 1 -.lO06xlO-l±l.1252xlO 1 -.1428xlO-l±i.1252xlO 1

-.1676xlO-3±i.l136xlO I -.1496xlO-2ti.l136xlO I -.3490xlO-2±i.l136xlO I

-.6210 x 10 -2 ± i.2337 -.9320 x 10 -2 ± i.2337 -.1363 x i0 -I ± i.2335

Blade
-.6524 x 10 -2 ± i.2346 -.9659 x 10 -2 ± i.2352 -.1389 x i0 -I ± i.2359

Lead-Lag
-.8424 x 10 -2 ± i.7772 -.1211 x i0 -I ± i.7769

-.7608 x 10 -2 ± i.7529-.4893 x 10 -2 ± i.7536

-.1703 x i0 -I ± i.7768

-.1136 x i0 -I ± i.7521

0.0 0.0 0.0 0.0 0.0 0.0

Rigid Body 0.0 0.0 0.0 0.0 0.0 0.0
Translation

Pitch

Roll

Bending in K-Y

Bending in X-Z

Torsion

,983_xi0-5±$ .2334xlO 4

-.3621 x I0 -I 0.0

-.1446 x i0 -I 0.0

-.5947xlO-4±i.351OxlO 1

-.5716xlO-5±i.5015xl_ 4

-.4181 x i0 -! 0.0

-.I025 x _O "I 0.0

-.3602xlO-4Zi.3174xlO 1

-.1394xlO-2±i.2175xlO 1

-.5773xlO-2_i.2188xlO 1

-.9268xlO-2±i.178_xlO 1

-.4941 ± i .5859 x i0 !

-.6421 ± i .7213

-.9658 x 10 -2 ± i.2352

-.4941 ± i .5859 x i01

-.1029xlO-2zi.2175xlO 1

-.6136xlO-2±i.2188xlO 1

-.6372xlO-2zi.1782xlO 1

-.5Z00 ± i .5845 x i0 !

,-.6562 ± i .7265

-.6522 x 10 -2 _+ i.2346

-.5200 ± i .5845 x i01

-.6929xlO-4±i.lO58xl_ 3

-.4640 x i0 -I 0.0

Torsion

Flap

Lead-Lag

Torsion

Flap

Lead-Lag

-.6918 x 10 -2 O,Q

,l155xlO-5±i.2765xlO 1

-.1952xlO-2±i.2176xlO 1

-.5152x10-2±i.2188x101

-,l_88xlQ-Izi.1783mlO 1

-.4706 ± i .5889 x l0 L

-.6162 ± i .7254

-.1389 X I0 -I ± i.2558

-.4706 ± i .5889 X i01

-.6562 ± i _7265 -.6421 @ i .7213 -.6162 ± i .7254

-.6522 x 10 -2 t i.2346 -.9658 x 10 -2 ± i.2352 -.1389 x i0 -I ± 1.2358

0.5

-.4589 ± i .6945 x 101

-.4572 ± i .6940 x i01

-.4560 ± i .5p3_ x i01

-.4559 ± i .5939 x 101

-.4570 ± i .4939 x i01

-.4598 ± i .4936 x 101

-.5670 ± i .1740 x 101

-.5725 ± i .1742 x i01

-.5514 ± i .7547

-.5736 ± i ,7364

-.5773 ± i .2577

-.5758 ± i .2580

-.1957xlO-Izi.1253x101

-.6190xlO-2±i.l136x101

-.1905 x i0 -I ± i.2328

-.1920 x 10 -I ± i.2363

-.2313 x 10 -I ± 1.7772

-.1617 x i0 -I ± i.7514

0.0 0.0

0.0 0.0

-._8_4_iO-3± _, 2_72xlO 3

-.5012 x i0 -I 0.0

-,_ x 19 -2 O.O

,806px_O-4±i.2285xlO !

-.2762xlO-2±i.2177X101

-.4165xlO-2±i.2189X101

-.2100_10-I±i.1785xI01

-.4557 ± i .5940 x i0 i

-.5759 ± i .7426

-.192i x i0 -I _* i.2363

-.4557 ± i . 5940 x i01

-.5759 ± i .7426

-.1921 x i0 -I ± i .2362

Table VI Results of Stability Analysis at Different Buoyancy Ratios
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--OUR ANALYTICAL RESULTS

Z_ @ [] O EXPERIMENT (Ref. 6)

4

2
[] [] O [] [] DDE]DI3E]E] [] u u

0

_R

I I t I t I

200 400 600 800 1000

_, R.P.M.

Figure 4 Model Frequencies as a Function of _, 0 = 0
(Configuration i) c
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OUR ANALYTICAL RESULTS

------ THEORY WITH INFLOW DYNAMICS (Ref. 7)

[] EXPERIMENT (Ref. 6)

'T

==

-2.5 -

[]

-2.0 [] []

-1.5

'D 0 @

-1.0 _
-0.5 _

o I I I I _ I I I _ I
0 200 400 600 800 1000

_, R.P.M.

Figure 5 Body Pitch Mode Damping as a Function of

_, @ = 0 (Configuration I)
C
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Figure 6 Body Roll Mode Damping as a Function of _, 0 = 0

(Configuration i) c
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-"----- OUR ANALYTICAL RESULTS

-- -- -- THEORY (Ref. 6)

O EXPERIMENT (Ref. 6 )

8

kJ ,,.., _ s0 0 _ v ...... _ _

I I I I I I I
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Pc' deg

(a) _ = 650 R.P.M.

"7
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==
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0 2 _. 6
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(b) _ = 900 R.P.M.

Figure 8 Lead-Lag Regressing Mode Damping as a

Function of @c at (a) 650 R.P.M. and
(b) 900 R.P.M. (Configuration i)
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I

43.892 m

I

(a)

I_

I-
21.946 m :--

(b)

WF2

Figure 9

21.946 m =I

WF1

(c)

Idealization of Supporting Structure for Bending

Type Deformations

(a) Free-Free Beam, (b) Free-Free Beam with

Heavy Mass at the Center and (c) Free-Free Beam

with Masses at the Center and at the Tips
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I

43.892 m

(a)

I

I

_ 21.946 m =[

(b) EACH HALF

(c) EACH HALF

Figure I0 Idealization of Supporting Structure for Torsion

Type Deformations

(a) Free-Free Beam, (b) Cantilevered Beam and

(c) Cantilevered Beam with Inertia at the Tip
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Figure ii Elementary Model of the Vehicle for Frequency

Evaluation in (a) Roll and (b) Pitch
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[]
4----

KSBXZ = 7.96 x 107 N/m _., 1.74 x 108 N/m

SBXZ = 1.499 _ 2.192

OJ

3.0

2.0

- 1.0
dlk

I I I I I I

-.075 -.05 -.025 0 .025 .05 0.75

Or

[] SUPPORTING STRUCTURE TORSION

O SUPPORTING STRUCTURE BENDING
IN X-Z PLANE (VERTICAL)

A SUPPORTING STRUCTURE BENDING
IN X-Y PLANE (HORIZONTAL)

• HIGH FREQUENCY LEAD-LAG 1

• HIGH FREQUENCY LEAD-LAG 2

• LOW FREQUENCY LEAD-LAG 1

• LOW FREQUENCY LEAD-LAG 2

Figure 13 Variation of Nondimensional Eigenvalues of Blade

Lead-Lag Modes and Supporting Structure Bending

Modes with Increase in Supporting Structure Bending

Stiffness in X-Z Plane (Vertical)
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• COLLECTIVE LEAD-LAG 1, 2

• SUPPORTING STRUCTURE TORSION

o LOW FREQUENCY LEAD-LAG 1

• LOW FREQUENCY LEAD-LAG 2

A HIGH FREQUENCY LEAD-LAG 1

* HIGH FREQUENCY LEAD-LAG 2

KST= 1.59x 106N.m _3.99x 107 N.m

_ST = 0.4 _ 2.0

I I

-.15 -.10 -.05

D

C
A

0.5

I

0 .05

I I

.10 .15

Or

A-B

B-C

C-D

KST = 3.01 x 106_-, 7.20 x 106 N.m

KST = 7.20 x 106 ,---,1.685 x 107 N.m

KST = 1.685 x 107"-_ 3.10 x 107 N.m

Figure 14 Variation of Nondimensional Eigenvalues of Blade

Lead-Lag Modes and Supporting Structure Torsion

Mode with Increase in Supporting Structure Stiff-

ness in Torsion
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• COLLECTIVE FLAP 2

/k COLLECTIVE FLAP 1

eoBODY PITCH

= 2.59 x 106 kg.m2-_ 4.75 x 106 kg.m 2
YY

1.0

"*'-" 0.5

I \\ I I _'-_*-"
-0.6 -0.2 -0.1 0

joJ

or

Figure 15 Variation of Nondimensional Eigenvalues of

Collective Flap Modes and Body Pitch Mode with

Increase in Body Inertia in Pitch
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• BODY ROLL

o LOW FREQUENCY LEAD-LAG 2

Ixx = 6.44 x 105 kg.m 2_ 2.0 x 106 kg.m 2

I I \\ I
-.005 -.004 -.001

joJ

0.8 -

0.7 -

,s

0

Figure 16 Variation of Nondimensional Eigenvalues of Low

Frequency Lead-Lag Mode and Body Roll Mode with

Increase in Body Inertia in Roll
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• BENDING IN X-Y PLANE (HORIZONTAL)

o BENDING IN X-Z PLANE (VERTICAL)

© TORSION

r

i I I I

-2.0 -1.5 -1.0 -0.5 0

x 10 -2

joJ

- 2.0

- 1.0

o"

Figure 17
Variation of Nondimensional Eigenvalues of the

Supporting Structure Elastic Modes with Decrease

in Buoyancy Ratio
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A _ A i

w v _ v

-0.5 -0.4

x 10 -1

A

v

(a) PITCH

0.4

0.2

-0.1 0

joJ

o"

(b) ROLL

0.4

0.2

joJ

x 10 -1

I I I I

-0.8 -0.4 0 0.4 0.8

x 10 -4 o-

Figure 18 Variation of Nondimensional Eigenvalues in (a) Pitch
and (b) Roll Modes with Decrease in Buoyancy Ratio
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APPENDIX A

Transformation to Multiblade Coordinates

For an N-bladed rotor with blades evenly spaced around, the azimuth angle

for the k th blade, at any instant, can be written as

*k -- _ + 2_ K K = I, .... N (A.I)N

where _ --_t, the nondimensional time variable.

Let _kbe a generalized coordinate associated with any degree of freedom of the kth blade,

flap or lead-lag or torsion. Since this _k is associated with the blade which is

rotating, it is called a rotating coordinate. If there are N blades, the behavior

of all the blade in that particular degree of freedom can be represented by N

rotating coordinates _i "'" _N" By suitably choosing a transformation, these N

rotating coordinates can be transformed to another set of N coordinates, each of

which is associated with a specific variation of all the _k'S (rotating coordinates]

when combined, as viewed from a nonrotating frame. This type of transformation is

called the multiblade coordinate transformation. Basically, this transformation

transforms the rotating coordinates into a nonrotating frame. Usually, the physi-

cal explanation about this transformation is given only with reference to flap

motion of the blade [Ref. 3].

The transformation from the rotating to the nonrotating coordinate is ob-

tained from the following operations

N
I

_M = _ k--El_k

N

1 )k
__ = _ k=Zl (-I eLk (for even N only)
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NI
_nc = N k_l c°s(n_k) _k

NI
_ns-- N" k=Elsin(n_k) _k (A.2)

where n = i, .... L and L =
N-1 for odd N2

N-2L = -- for even N2

The inverse transformation is

L
_k = _M+ nZl (_nc cos n_k + _ns sin n_k) + (-i) (A.3)_-M

Last term will appear only even N. The proof for this transformation can be found

in Ref. 3.

This transformation, given in Eq. (A.I), looks like a truncated Fourier

series, except for the last term. The major difference between this transformation

and the usual Fourier transformation is that here the coefficients _M' _nc' _ns'

_-M are all functions of time, whereas in the Fourier series the coefficients are

constants. That is why sometimesthese multiblade coordinates are also referred to

as Fourier coordinates.

N
1

O+ fO is ..... +="+_

N

I )k_-M = N k--El(-I %

+n_
nc ns

N
2

k=Zl c°s(n_ k)

-n_
ns nc

N
2

k=Zl sin(n_ k)

(A,4)

Differentiating again with respect to
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N
"° i °"

•" i N (1)k ..

-_M : N k=Zl _k

N
2 2 ""

+ 2n_ -n a :
nc ns nc N k=Zl c°s(n_k) _k

N
"" • 2 2 "" (A.5)

- 2n _ - n _ = -- Z sin(n_ ) _kns nc ns N k 1 k

It can be seen that the transformation of acceleration terms from the rotating

frame introduces coriolis and centrifugal terms in the nonrotating frame. So,

the transformation from the rotating frame to the nonrotating frame is accomplished

by applying the following N operators to the complete set of linear equations,

for the rotating blade, in the rotating frame. They are

N
z (...)

k--E1
collective operator

N
1 k

k__Sl (-t) (...1 alternating operator

N
i

k=Zl cos n_k (...) n-cosine operator

N
I

kS1 sin n_k (...) n-sine operator (A.6)

These four operators are applied to each equation representing the blade degree

of freedom and the blade degrees of freedom are replaced by the multiblade

coordinates using Equations (A.2), (A.4) and (A.5). The resulting equations

will have the multiblade coordinates as the generalized coordinates. These

equations represent the dynamics of the rotor as a whole as viewed from a non-

rotating frame.
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APPENDIX B

Application of Multiblade Coordinate Transformation

To Multi-Rotor System

In Ref. i, the blade loads are derived, in a general form for a typical

rotor with a moving hub and the rotor is assumed to operate at a specified

constant value of _. When using these expressions for the calculation of blade

loads, for two different rotor systems operating at different values of _, a

number of special provisions described below have to be introduced.

First note that in the general expressions for the blade loads, various time

derivative terms are nondimensionalized with respect to a nondimensional time

= _t, where _ is the angular speed of the rotor. In a multirotor system, if

the rotors operate at different values of _, the nondimensional time _ is dif-

ferent for different rotors, which leads to inconsistency. This problem can he

resolved using the angular speed of one rotor, say _I of the rotor RI, as the

reference _. Then all the time derivative terms, that appear in the blade load

expressions for different rotors, can be suitably modified such that the non-

dimensional time is the same for the complete set of equations. The nondimensional

time will be 41 = _I t.

The second important item is encountered while applying the multiblade

coordinate transformation to a [,iultirotor system. In _,_ .-_v°_u_ _ _L_ _-o_=__._

transformation, the following operators are applied to the blade equations:

2 N
N k--E1 cos n_ (...) n-cosine

N
2

kZl sin n_k (...) n-sine (B.I)

where _k = _ + 2 __KKN

and _ = _t

In a multirotor system, these operators are different for the blade equations in

different rotors. In general, for the i th rotor, these can be written as
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N

2 n_i (..)
k_E1 cos k "

n-cosine

N
2 i

k__E1 sin n* k (...1

i K
where _k = _i + 2_

n-sine (B.2)

i
rotor. These operatorsNote that _k contains the angular speed _'l of the ith

th
have to be applied to the blade equations in the i rotor system to transform

the blade equations to the nonrotating frame. When applying Eqs. (B.2) to the time

derivative terms for the blade degrees of freedom, the transformation given in

Eq. (A.4) and (A.5) should not be used directly because the time derivative is

taken with respect to a reference nondimensional time, say 41.

The derivation given below shows the modifications which have to be incor-

porated, in the blade equations, both for nondimensionalization and for the

application multiblade coordinate transformation when dealing with a multirotor

system in which each rotor is operating at a different value of _.

Let _i be the reference angular speed which represent rotor system R 1 and

I
let Bk be the flap degree of freedom of the k th blade in the rotor system R 1.

Furthermore let _. be the angular speed of the ith rotor system and denote by
1

i
_k the flap degree of freedom of the kth blade in rotor system R..I The time

derivatives of these degrees of freedom can be written in the nondimensional

form as,

d---_= _i d(_it) = _i d_l = _i ( _i ) d_ I
(B. 3)
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d_k dBk dBk _1 dSi

dt = Qi d(_it) = _" = _" ( )a. d_i ]- -_i d_ I

(B.4)

If the general load expressions, derived for typical rotor blade, are used for

all the rotor systems in a vehicle, then the first time derivative terms in the

load expressions for the rotor R 1 will be with respect to _i and that for the

rotor R. will be with respect to _i. If the angular speeds in the rotor systems
x

are different, then the nondimensional time will be different for the rotors.

For consistency, the underlined expression should be used for all the first derivative

terms appearing in the ith rotor load expressions. Hence, the general blade load

expressions can be used for different rotors after multiplying the first time

Q1 Q1 )2.
derivative terms by ( _7. ) and the second time derivative terms by ( _. The

l l

nondimensional time, in this case, is _i = _it. (Note: All the _'s are constants).

The following derivation shows how this nondimensionalization affects the multi-

blade coordinate transformation.
i

Let
nc

and i be the transformed n-cosine and
ns

n-sine degrees of freedom in the nonrotating frame and let the corresponding rotat-

i
ing blade degree of freedom be ek, for rotor system R.x.

Thus

N

i 2 n$.i i_ . X_ cos . (B.5)
nc N k=l ' K K

N
i 2 i i

= -- E sin (B. 6)
ns N k=l n_k _k

i = _i 2nk
where _k + T

and _i = Q.t , _. is the ith
l 1

rotor angular speed

Differentiating Eq. (B.5) with respect to t

N
"i 2 i i i -i

= -- _ - sin • n_ i + cosnc N k=l n_k _k n_k _k
(B.7)
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d ( )
where (') = d-_

Equations (B.7) can be written as

N
•i i 2 y_+n_. _ = --
nc l ns N k=l cos n_k

Nondimensionalizing the time derivative with respect to _i = _It, where _I

is the reference angular speed, Eq. (B.8) becomes

,i i 2 N i *i

_l a + n_. e = -- Z cos _l _knc i ns N k=l n_k

Where (*)= d

d_ I

1
Multiplying both sides of Eq. (B.8) by ( _?. )

1

_i *i i 2 N i _I *i

_. [ ( ) _ + n _ ] = -- k=Zl cos _i ( ) _k1 _. nc ns N n_k _.
1 1

(B.8)

(B.9)

(B.10)

The underlined term is the same as that in equation (B.4)

Cancelling _. on both sides, Eq. (B.10) yields
1

_i i 2 N i _I *i

( _. ) _i + n_ = -- Z cos ( ) _knc ns N k=l n_k _?.
l 1

(B.ll)

Equation (B.10) shows how the first time derivative term in the rotor system

R. transforms into the multiblade coordinate system. It turns out that in the
i

transformed multiblade coordinate system, the first time derivative term is

to be multiplied by ( _ ). It can also be shown that the second time derivative

1 _i )2
term is to be multiplied by ( _. . These multiplication factors take care

l

of both consistency in nondimensionalization and proper multiblade coordinate

transformation8

_I *i

A closer look at the equation (B.II) shows that ( _. ) _k transforms into

*" _i i (_i + ) eventhough ( _. ) term is
_i (_i) + n_ and not n_nc ns nc s) (_i 1

156



independent of the summation. This term does not act as a commonmultiplier

for both sides. This term is multiplied only to the first derivative term

on the left hana side. For the case when_I = _i' equation (B.II) reverts

to the original equation given in equation (A.4).

Thus, in blade load expressions derived in nondimensional form for a

typical rotor, the time derivative terms have to be multiplied by a factor

_i )P
( _. (power of this factor depends on the order of differentiation) and

1

the same factor has to be introduced also in thp time derivative terms which

appear in the transformed multiblade coordinat..
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APPENDIX C

Rotor_ Blade and Body Properties

The data provided _elow describes the rotor tested in Ref. [6].

Rotor Geometry

Number of blades 3

Radius, cm 81.1

Chord, cm 4.19

Hinge offset, cm 8.51

Blade airfoil NACA 23012

Profile drag coefficient 0.0079

Lock number 7.73

Solidity ratio 0.0494

Lift curve slope 27

Height of rotor hub above gimbal, cm 24.1

Blade Mass Properties

Blade mass (to flap flexure), gram 209

Blade mass centroid

(Ref. flexure centerline), cm 18.6

Blade flap inertia

(Ref. flexure centerline), gram 17.3

_;lade Frequency and Dampinj_

Nonrotating flap frequency Hz

Nonrotating lead-lag frequency Hz

Damping in lead-lag (% critical)

I_dy Mass Properties

2
Rotary inertia in pitch, gram m

2
Rotary inertia in roll, gram m

Configuration i

3.13

6.70

0.52%

633

183
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Body Frequency and Damping

Pitch frequency, Hz

Roll frequency, Hz

Damping in roll (% critical)

Damping in pitch (% critical)

2

4

0.929%

3.20%
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